Geologic Hazards Science Center

Home

The Geologic Hazards Science Center (GHSC), on the Colorado School of Mines campus, is home to the National Earthquake Information Center (NEIC), many scientists in the Earthquake Hazards Program and Landslide Hazards Program, as well as the Geomagnetism Program staff.

Earthquake Hazards Program

Earthquake Hazards Program

The Earthquake Hazards Program provides research and information products for earthquake loss reduction, including hazard and risk assessments, comprehensive real-time earthquake monitoring, and public outreach.

Earthquake Hazards

Landslide Hazards Program

Landslide Hazards Program

The National Landslide Hazards Program strives to reduce long-term losses from landslide hazards by improving our understanding of the causes of ground failure and suggesting mitigation strategies.

Landslide Hazards

Geomagnetism Program

Geomagnetism Program

The Geomagnetism Program provides continuous records of magnetic field variations; disseminates magnetic data; and conducts research into the nature of geomagnetic variations for purposes of scientific understanding and hazard mitigation.

Geomagnetism

News

Date published: August 4, 2021

10-Year Anniversary of US’s Most Widely Felt Earthquake

Ten years ago, in the early afternoon of August 23, 2011, millions of people throughout the eastern U.S. felt shaking from a magnitude 5.8 earthquake near Mineral, Virginia. No lives were lost, something experts called “lucky” given the extent of shaking, but property damage was estimated to be in the range of $200 to $300 million.

Date published: July 22, 2021

Down to Earth: Complexities of Geology Affect Nuclear Electromagnetic Pulse Hazard 

Geoelectric hazards generated by a nuclear explosion at the outer edge of Earth’s atmosphere can be strongly affected by the electrical conductivity of rock structures beneath the Earth's surface, according to a study led by the U.S. Geological Survey.  

Publications

Publication Thumbnail
Year Published: 2021

Local variations in broadband sensor installations: Orientations, sensitivities, and noise levels

As seismologists continue to place more stringent demands on data quality, accurately described metadata are becoming increasingly important. In order to better constrain the orientation and sensitivities of seismometers deployed in U.S. Geological Survey networks, the Albuquerque Seismological Laboratory (ASL) has recently begun identifying true...

Ringler, Adam T.; Anthony, Robert E.

Publication Thumbnail
Year Published: 2021

An evaluation of the timing accuracy of global and regional seismic stations and networks

Clock accuracy is a basic parameter of any seismic station and has become increasingly important for seismology as the community seeks to refine structures and dynamic processes of the Earth. In this study, we measure the arrival time differences of moderate repeating earthquakes with magnitude 5.0–5.9 in the time range of 1991–2017 at the same...

Yang, Ying; Song, Xiaodong; Ringler, Adam T.

Publication Thumbnail
Year Published: 2021

Modeling seismic network detection thresholds using production picking algorithms

Estimating the detection threshold of a seismic network (the minimum magnitude earthquake that can be reliably located) is a critical part of network design and can drive network maintenance efforts. The ability of a station to detect an earthquake is often estimated by assuming the spectral amplitude for an earthquake of a given size, assuming an...

Wilson, David C.; Wolin, Emily; Yeck, William L.; Anthony, Robert E.; Ringler, Adam T.