Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 2228

Earthquake scenario development in the 2023 USGS NSHM update

Earthquake scenarios are generally selected to serve a wide variety of local and regional needs ranging from testing a community’s ability to respond to earthquakes to developing proactive targeted mitigation strategies for minimizing impending risk. These deterministic scenarios can also be used to communicate seismic hazard and risk to audiences who are not well versed in more complex methods li
Authors
Robert Edward Chase, Kishor S. Jaiswal, Mark D. Petersen

Earthquake scenario selection for portfolio holders in CEUS: A case study with Oklahoma DOT

Portfolio managers of spatially distributed assets in the central and eastern United States (CEUS) and other low- to moderate seismic hazard regions require scenario-based seismic risk assessment for the purpose of emergency management and planning. Uncertainties regarding the long-term seismicity of the region, unknown faults, and limited historical records complicate the selection of an earthqua
Authors
Yolanda C Lin, L. L. Rotche, Kuo-wan Lin, Eric M. Thompson, David Lallemant, W. Peters, David J. Wald

Implementation of basin models and sediment depth terms in the 2023 update of the U.S. National Seismic Hazard Model: Example from Reno, Nevada

We present a framework to evaluate the inclusion of candidate basin depth models in the U.S. Geological Survey National Seismic Hazard Model. We compute intensity measures (peak and spectral amplitudes) from uniformly processed earthquake ground motions in and around the basin of interest and compare these to ground-motion model (GMM) estimates over a range of oscillator periods. The GMMs use dept
Authors
Sean Kamran Ahdi, Morgan P. Moschetti, Brad T. Aagaard, Kaitlyn Abernathy, Oliver S. Boyd, William J. Stephenson

Integrated strategies for enhanced rapid earthquake shaking, ground failure, and impact estimation employing remotely sensed and ground truth constraints

Estimating earthquake impacts using physical or empirical models is challenging because the three components of loss estimation-shaking, exposure, and vulnerabilities-entail inherent uncertainties. Loss modeling in near-real-time adds additional uncertainties, yet expectations for actionable information with a reasonable level of confidence in the results are real. The modeling approaches describe
Authors
David J. Wald, Susu Xu, H. Noh, J. Dimasaka, Kishor S. Jaiswal, Kate E. Allstadt, Davis T. Engler

Western U.S. deformation models for the 2023 update to the U.S. National Seismic Hazard Model

This report describes geodetic and geologic information used to constrain deformation models of the 2023 update to the National Seismic Hazard Model (NSHM), a set of deformation models to interpret these data, and their implications for earthquake rates in the western United States. Recent updates provide a much larger data set of Global Positioning System crustal velocities than used in the 2014
Authors
Fred Pollitz, Eileen L. Evans, Edward H. Field, Alexandra Elise Hatem, Elizabeth H. Hearn, Kaj M Johnson, Jessica R. Murray, Peter M. Powers, Zheng-Kang Shen, Crystal Wespestad, Yuehua Zeng

GPS velocity field of the Western United States for the 2023 National Seismic Hazard Model update

Global Positioning System (GPS) velocity solutions of the western United States (WUS) are compiled from several sources of field networks and data processing centers for the 2023 U.S. Geological Survey National Seismic Hazard Model (NSHM). These solutions include both survey and continuous‐mode GPS velocity measurements. I follow the data processing procedure of Parsons et al. (2013) for the Unifo
Authors
Yuehua Zeng

Western U.S. geologic deformation model for use in the U.S. National Seismic Hazard Model 2023

Fault geometry and slip rates are key input data for geologic deformation models, which are a fundamental component of probabilistic seismic hazard analyses (PSHAs). However, geologic sources for PSHA have traditionally been limited to faults with field‐based slip rate constraints, which results in underrepresentation of known, but partially characterized, active faults. Here, we evaluate fault ge
Authors
Alexandra Elise Hatem, Nadine G. Reitman, Richard W. Briggs, Ryan D. Gold, Jessica Ann Thompson Jobe, Reed J. Burgette

Spaceborne InSAR mapping of landslides and subsidence in rapidly deglaciating terrain, Glacier Bay National Park and Preserve and vicinity, Alaska and British Columbia

The Glacier Bay area in southeastern Alaska and British Columbia, encompassing Glacier Bay National Park and Preserve, has experienced rapid glacier retreat since the end of the Little Ice Age in the mid-1800s. The impact that rapid deglaciation has had on the slope stability of valley walls and on the sedimentation of fans and deltas adjacent to fjords and inlets is an ongoing research topic. Usi
Authors
Jinwook Kim, Jeffrey A. Coe, Zhong Lu, Nikita N. Avdievitch, Chad Hults

Geoelectric constraints on the Precambrian assembly and architecture of southern Laurentia

Using images from an updated and expanded three-dimensional electrical conductivity synthesis model for the contiguous United States (CONUS), we highlight the key continent-scale geoelectric structures that are associated with the Precambrian assembly of southern Laurentia. Conductivity anomalies are associated with the Trans-Hudson orogen, the Penokean suture, the ca. 1.8–1.7 Ga Cheyenne belt and
Authors
Benjamin Scott Murphy, Paul A. Bedrosian, Anna Kelbert

Simplifying complex fault data for systems-level analysis: Earthquake geology inputs for U.S. NSHM 2023

As part of the U.S. National Seismic Hazard Model (NSHM) update planned for 2023, two databases were prepared to more completely represent Quaternary-active faulting across the western United States: the NSHM23 fault sections database (FSD) and earthquake geology database (EQGeoDB). In prior iterations of NSHM, fault sections were included only if a field-measurement-derived slip rate was estimate
Authors
Alexandra Elise Hatem, Camille Marie Collett, Richard W. Briggs, Ryan D. Gold, Stephen J. Angster, Edward H. Field, Peter M. Powers

Seismometer records of ground tilt induced by debris flows

A change in surface loading causes the Earth’s surface to deform. Mass movements, such as debris flows, can cause a tilt large enough to be recorded by nearby instruments, but the signal is strongly dependent on the mass loading and subsurface parameters. Specifically designed sensors for such measurements (tiltmeters) are cumbersome to install. Alternatively, broadband seismometers record transla
Authors
Michaela Wenner, Kate E. Allstadt, Weston Thelen, Andrew Lockhart, Jacob Hirschberg, Brian W. McArdell, Fabian Walter

Introduction to the special issue of the Consortium of Organizations for Strong Motion Observation Systems (COSMOS) international guidelines for applying noninvasive geophysical techniques to characterize seismic site conditions

Knowledge about local seismic site conditions provides critical information to account for site effects that are commonly observed in strong motion recordings. Certainly, other wave propagation effects can influence these observations, which are attributable to variations in material properties of the paths traveled by the waves, as well as the characteristics of the seismic source. However, local
Authors
Alan Yong, Aysegul Askan, John Cassidy, Sebastiano D'Amico, Stefano Parolai, Marco Pilz, William J. Stephenson
Was this page helpful?