Skip to main content
U.S. flag

An official website of the United States government

Surface Water Modeling

Filter Total Items: 14

Delineating High-Resolution Urban Drainage Systems for Stormwater Management in the Neponset River Watershed

The natural environment and manmade infrastructure must be considered when characterizing hydrology and water quality in urban watersheds. This requirement is critical in stormwater management, which must account for how water flows above ground and underground through stormwater infrastructure. The U.S. Geological Survey (USGS), with support from the U.S. Environmental Protection Agency (EPA), is...
link

Delineating High-Resolution Urban Drainage Systems for Stormwater Management in the Neponset River Watershed

The natural environment and manmade infrastructure must be considered when characterizing hydrology and water quality in urban watersheds. This requirement is critical in stormwater management, which must account for how water flows above ground and underground through stormwater infrastructure. The U.S. Geological Survey (USGS), with support from the U.S. Environmental Protection Agency (EPA), is...
Learn More

Characterizing Future Climate and Hydrology in Massachusetts using Stochastic Modeling Methods

Communities across Massachusetts may face potential consequences of climate change, ranging from more extreme rainfall to more pronounced and frequent droughts. Climate change could alter the state’s hydrology in potentially complex and unanticipated ways. Typical approaches for projecting hydrologic risk under climate change can misrepresent and underestimate the variability of climate and...
link

Characterizing Future Climate and Hydrology in Massachusetts using Stochastic Modeling Methods

Communities across Massachusetts may face potential consequences of climate change, ranging from more extreme rainfall to more pronounced and frequent droughts. Climate change could alter the state’s hydrology in potentially complex and unanticipated ways. Typical approaches for projecting hydrologic risk under climate change can misrepresent and underestimate the variability of climate and...
Learn More

Environmental streamflows in the United States: historical patterns and predictions

The term environmental streamflows refers to the magnitude, frequency, seasonal timing, duration, and rate of change of streamflows needed to sustain freshwater and estuary ecosystems and human wellbeing. It is important that environmental streamflow assessments by water managers consider changes in climate, land use, and water management; this cannot be done effectively without understanding...
link

Environmental streamflows in the United States: historical patterns and predictions

The term environmental streamflows refers to the magnitude, frequency, seasonal timing, duration, and rate of change of streamflows needed to sustain freshwater and estuary ecosystems and human wellbeing. It is important that environmental streamflow assessments by water managers consider changes in climate, land use, and water management; this cannot be done effectively without understanding...
Learn More

The Connecticut Streamflow and Sustainable Water Use Estimator: A Decision-Support Tool to Estimate Streamflow and Water Availability at Ungaged, User-Defined Stream Locations in Connecticut

The Connecticut streamflow and sustainable water use estimator is a decision-support tool that provides estimates of daily unaltered streamflow, water-use adjusted streamflow (for the portions of the state where water-use data are available), and water availability for ungaged, user-defined sites in Connecticut.
link

The Connecticut Streamflow and Sustainable Water Use Estimator: A Decision-Support Tool to Estimate Streamflow and Water Availability at Ungaged, User-Defined Stream Locations in Connecticut

The Connecticut streamflow and sustainable water use estimator is a decision-support tool that provides estimates of daily unaltered streamflow, water-use adjusted streamflow (for the portions of the state where water-use data are available), and water availability for ungaged, user-defined sites in Connecticut.
Learn More

Nutrient and Sediment Load Reduction Estimates from Intensive Street Cleaning and Leaf Litter Removal Practices in Vermont

Urban stormwater runoff contains high phosphorus concentrations that contribute to the eutrophication to receiving waters. Recent studies have further shown that leaf fall management presents an opportunity to maximize the effectiveness of common municipal practices such as street cleaning and leaf litter removal and substantially nutrient loading.
link

Nutrient and Sediment Load Reduction Estimates from Intensive Street Cleaning and Leaf Litter Removal Practices in Vermont

Urban stormwater runoff contains high phosphorus concentrations that contribute to the eutrophication to receiving waters. Recent studies have further shown that leaf fall management presents an opportunity to maximize the effectiveness of common municipal practices such as street cleaning and leaf litter removal and substantially nutrient loading.
Learn More

Development of Streamflow Record Extension Equations in New Hampshire

Currently, there are 16 designated rivers in New Hampshire in need of daily mean streamflow estimates for managing instream flows. Many of New Hampshire’s Designated Rivers have current and/or historical streamflow data that may be used to extend an existing streamgages streamflow record in time through record extension techniques. Evaluating the feasibility of record extension techniques to...
link

Development of Streamflow Record Extension Equations in New Hampshire

Currently, there are 16 designated rivers in New Hampshire in need of daily mean streamflow estimates for managing instream flows. Many of New Hampshire’s Designated Rivers have current and/or historical streamflow data that may be used to extend an existing streamgages streamflow record in time through record extension techniques. Evaluating the feasibility of record extension techniques to...
Learn More

Flow Modeling at Dam Removal Sites Associated with Hurricane Sandy Resiliency Efforts

The purpose of this work is to better understand the effects of dam removal on local hydraulics, fish passage, and flooding. This study is part of a larger effort to monitor ecological resilience changes at nine Hurricane Sandy coastal resiliency aquatic connectivity restoration projects. It will contribute crucial knowledge that will be used to improve aquatic connectivity system cost...
link

Flow Modeling at Dam Removal Sites Associated with Hurricane Sandy Resiliency Efforts

The purpose of this work is to better understand the effects of dam removal on local hydraulics, fish passage, and flooding. This study is part of a larger effort to monitor ecological resilience changes at nine Hurricane Sandy coastal resiliency aquatic connectivity restoration projects. It will contribute crucial knowledge that will be used to improve aquatic connectivity system cost...
Learn More

Trend Reproduction

As part of the National Water Budget Project, our objective is to quantify how well observed trends are simulated.
link

Trend Reproduction

As part of the National Water Budget Project, our objective is to quantify how well observed trends are simulated.
Learn More

HBMI PRMS Project

This project will provide a deterministic watershed model of the Meduxnekeag River watershed with a capacity to model water-temperatures capable of simulating future hydrologic and temperature changes based on projected climate estimates.
link

HBMI PRMS Project

This project will provide a deterministic watershed model of the Meduxnekeag River watershed with a capacity to model water-temperatures capable of simulating future hydrologic and temperature changes based on projected climate estimates.
Learn More
link

SELDM: Stochastic Empirical Loading and Dilution Model - Project page

Note: SELDM is now on version 1.1.1.
Learn More

IJC Lake Champlain and the Richelieu River Project

The record setting floods of 2011 in Lake Champlain Vermont/New York U.S. and the Richelieu River in the province of Quebec Canada prompted the U.S. and Canadian governments to work together to identify how flood forecasting, preparedness and mitigation can be improved in the Lake Champlain-Richelieu River (LCRR) basin.
link

IJC Lake Champlain and the Richelieu River Project

The record setting floods of 2011 in Lake Champlain Vermont/New York U.S. and the Richelieu River in the province of Quebec Canada prompted the U.S. and Canadian governments to work together to identify how flood forecasting, preparedness and mitigation can be improved in the Lake Champlain-Richelieu River (LCRR) basin.
Learn More

Stochastic Empirical Loading and Dilution Model (SELDM) Transportation Research Board Presentation

Note: SELDM is now on version 1.0.3 Please use the new version on the software support page here
link

Stochastic Empirical Loading and Dilution Model (SELDM) Transportation Research Board Presentation

Note: SELDM is now on version 1.0.3 Please use the new version on the software support page here
Learn More