Skip to main content
U.S. flag

An official website of the United States government

Stream Water Quality

Filter Total Items: 48

Bacteriological Research Core Technology Team

About the Research The Michigan Bacteriological Research Laboratory (MI-BaRL) Core Technology Team (CTT) as part of the Environmental Health Program uses a wide array of traditional and modern molecular approaches to evaluate microbial pathogens and antimicrobial resistance pathways in the environment. The scientists use these approaches to advance the understanding of how environmental...
link

Bacteriological Research Core Technology Team

About the Research The Michigan Bacteriological Research Laboratory (MI-BaRL) Core Technology Team (CTT) as part of the Environmental Health Program uses a wide array of traditional and modern molecular approaches to evaluate microbial pathogens and antimicrobial resistance pathways in the environment. The scientists use these approaches to advance the understanding of how environmental...
Learn More

Milwaukee Metropolitan Sewerage District (MMSD) Watercourse Corridor Study

Since 2000, the USGS and MMSD have been partners in the Milwaukee Area Watercourse Corridor Study. The USGS has applied a multi-disciplinary approach to monitor and assess stream water quality within studies of aquatic communities, geomorphology and habitat, water and sediment, and streamflow. Results are provided to MMSD and watershed management agencies for planning and decision-making.
link

Milwaukee Metropolitan Sewerage District (MMSD) Watercourse Corridor Study

Since 2000, the USGS and MMSD have been partners in the Milwaukee Area Watercourse Corridor Study. The USGS has applied a multi-disciplinary approach to monitor and assess stream water quality within studies of aquatic communities, geomorphology and habitat, water and sediment, and streamflow. Results are provided to MMSD and watershed management agencies for planning and decision-making.
Learn More

MMSD Watercourse Corridor Study: Contaminants in Water and Sediment

There are many kinds of chemical, physical, and biological contaminants contained in water and sediment, and new or “emerging” contaminants are continually being discovered. USGS investigations of contaminants in the MMSD Watercourse Corridor Study include studies of PFAS, PAHs, microplastics, and wastewater contamination as well as modeling long-term trends in water quality.
link

MMSD Watercourse Corridor Study: Contaminants in Water and Sediment

There are many kinds of chemical, physical, and biological contaminants contained in water and sediment, and new or “emerging” contaminants are continually being discovered. USGS investigations of contaminants in the MMSD Watercourse Corridor Study include studies of PFAS, PAHs, microplastics, and wastewater contamination as well as modeling long-term trends in water quality.
Learn More

MMSD Watercourse Corridor Study: Ecological Assessments and Trends

Changes in streams that result from urban development such as loss of stream habitat, inadequate or flashy streamflow, and degraded water quality can adversely affect communities of aquatic organisms. MMSD Watercourse Corridor Study ecological assessments evaluate water quality over time by pairing community assessments of aquatic organisms with chemical assessments from passive samplers, as well...
link

MMSD Watercourse Corridor Study: Ecological Assessments and Trends

Changes in streams that result from urban development such as loss of stream habitat, inadequate or flashy streamflow, and degraded water quality can adversely affect communities of aquatic organisms. MMSD Watercourse Corridor Study ecological assessments evaluate water quality over time by pairing community assessments of aquatic organisms with chemical assessments from passive samplers, as well...
Learn More

MMSD Watercourse Corridor Study: Nutrient Evaluations

Eutrophication and harmful algal blooms (HABs) are becoming an increasing concern in the Great Lakes. Although there is a total maximum daily load (TMDL) for phosphorus in the Milwaukee Estuary, abundance/biovolume of potential HAB-producing cyanobacteria and cyanotoxin presence in Milwaukee-area rivers and the estuary are largely unknown. USGS evaluations of nutrients in the MMSD Watercourse...
link

MMSD Watercourse Corridor Study: Nutrient Evaluations

Eutrophication and harmful algal blooms (HABs) are becoming an increasing concern in the Great Lakes. Although there is a total maximum daily load (TMDL) for phosphorus in the Milwaukee Estuary, abundance/biovolume of potential HAB-producing cyanobacteria and cyanotoxin presence in Milwaukee-area rivers and the estuary are largely unknown. USGS evaluations of nutrients in the MMSD Watercourse...
Learn More

GLRI Urban Stormwater Monitoring

The GLRI Urban Stormwater Monitoring effort brings together the expertise of the USGS with local and national partners to assess the ability of green infrastructure to reduce stormwater runoff in Great Lakes urban areas.
link

GLRI Urban Stormwater Monitoring

The GLRI Urban Stormwater Monitoring effort brings together the expertise of the USGS with local and national partners to assess the ability of green infrastructure to reduce stormwater runoff in Great Lakes urban areas.
Learn More

Edge-of-field monitoring

Edge-of-field monitoring focuses on identifying and reducing agricultural sources of excess nutrients which can threaten the health of streams, rivers, and lakes. Edge-of-field monitoring assesses the quantity and quality of agricultural runoff and evaluates the effectiveness of conservation practices that aim to reduce nutrient loss.
link

Edge-of-field monitoring

Edge-of-field monitoring focuses on identifying and reducing agricultural sources of excess nutrients which can threaten the health of streams, rivers, and lakes. Edge-of-field monitoring assesses the quantity and quality of agricultural runoff and evaluates the effectiveness of conservation practices that aim to reduce nutrient loss.
Learn More

Mercury studies

The USGS Mercury Research Lab is a national leader in advancing mercury research and science, specializing in low-level mercury speciation and isotope analysis and mercury-source fingerprinting. The MRL leads national cutting-edge collaborative studies, including state-of-the-art sample analysis, methods development for field and lab procedures, and data interpretation and dissemination.
link

Mercury studies

The USGS Mercury Research Lab is a national leader in advancing mercury research and science, specializing in low-level mercury speciation and isotope analysis and mercury-source fingerprinting. The MRL leads national cutting-edge collaborative studies, including state-of-the-art sample analysis, methods development for field and lab procedures, and data interpretation and dissemination.
Learn More

Chemicals of Concern in the Great Lakes Basin

The Great Lakes are an important freshwater source of drinking water, fisheries, and habitat. Chemicals of concern are introduced to the environment by human activities, but resulting ecological consequences are little understood. With federal and University partners, we are characterizing the presence of contaminants and potential effects to fish in Great Lakes tributaries.
link

Chemicals of Concern in the Great Lakes Basin

The Great Lakes are an important freshwater source of drinking water, fisheries, and habitat. Chemicals of concern are introduced to the environment by human activities, but resulting ecological consequences are little understood. With federal and University partners, we are characterizing the presence of contaminants and potential effects to fish in Great Lakes tributaries.
Learn More

Environmental Effects of Agricultural Practices

As agricultural land in the Minnesota River Basin is retired, tile drains are removed or broken and riparian corridors are planted to reduce runoff. Early studies saw decreased sediment and nitrogen and improved biological indicators but no significant changes in phosphorus. This project continues to investigate the linkages between riparian buffer extent, age, and continuity; stream water; and...
link

Environmental Effects of Agricultural Practices

As agricultural land in the Minnesota River Basin is retired, tile drains are removed or broken and riparian corridors are planted to reduce runoff. Early studies saw decreased sediment and nitrogen and improved biological indicators but no significant changes in phosphorus. This project continues to investigate the linkages between riparian buffer extent, age, and continuity; stream water; and...
Learn More

Bacterial Pathogens

The U.S. Geological Survey (USGS) Michigan Bacteriological Research Laboratory (MI-BaRL) studies the source, occurrence, and distribution of the bacterial pathogens Shiga-toxin producing E. coli (STEC), Salmonella, Shigella, Campylobacter, Enterococcus, and Staphylococcus and the relation of occurrence of pathogens with fecal indicator bacteria, land-use, season, hydrology, geology, weather...
link

Bacterial Pathogens

The U.S. Geological Survey (USGS) Michigan Bacteriological Research Laboratory (MI-BaRL) studies the source, occurrence, and distribution of the bacterial pathogens Shiga-toxin producing E. coli (STEC), Salmonella, Shigella, Campylobacter, Enterococcus, and Staphylococcus and the relation of occurrence of pathogens with fecal indicator bacteria, land-use, season, hydrology, geology, weather...
Learn More

Using optical sensors to detect sewage contamination in the Great Lakes

In the Great Lakes, large volumes of sewage never make it to wastewater treatment plants due to illicit discharges and leaking sewer infrastructure, but contamination can be difficult to detect. This study will define the utility and practicality of using optical sensors to identify the sources and timing of sewage contamination in surface water and storm sewers in real-time field settings.
link

Using optical sensors to detect sewage contamination in the Great Lakes

In the Great Lakes, large volumes of sewage never make it to wastewater treatment plants due to illicit discharges and leaking sewer infrastructure, but contamination can be difficult to detect. This study will define the utility and practicality of using optical sensors to identify the sources and timing of sewage contamination in surface water and storm sewers in real-time field settings.
Learn More