Skip to main content
U.S. flag

An official website of the United States government


This list of Upper Midwest Water Science Center publications spans from 1899 to present. It includes both official USGS publications and journal articles authored by our scientists. To access the full, searchable catalog of USGS publications, please visit the USGS Publications Warehouse.

Filter Total Items: 2229

Hydrologic study of green infrastructure in poorly drained urbanized soils at RecoveryPark, Detroit, Michigan, 2014–21

Uncontrolled stormwater runoff volume is a legacy stressor on sewer-system capacity that is further compromised by the effects of aging infrastructure. Green stormwater infrastructure (GSI) has been used in a variety of designs and configurations (for example, bioretention) with the goal of increasing evapotranspiration and infiltration in the local water cycle. In practice, GSIs have variable eff
Ralph J. Haefner, Christopher J. Hoard, William Shuster

Comparing modern identification methods for wild bees: Metabarcoding and image-based morphological taxonomic assignment

With the decline of bee populations worldwide, studies determining current wild bee distributions and diversity are increasingly important. Wild bee identification is often completed by experienced taxonomists or by genetic analysis. The current study was designed to compare two methods of identification including: (1) morphological identification by experienced taxonomists using images of field-c
Cassandra Smith, Robert S. Cornman, Jennifer A. Fike, Johanna M. Kraus, Sara J. Oyler-McCance, Carrie E Givens, Michelle Hladik, Mark W. Vandever, Dana W. Kolpin, Kelly Smalling

Design and calibration of a nitrate decision support tool for groundwater wells in Wisconsin, USA

This paper describes development of a nitrate decision support tool for groundwater wells (GW-NDST) that combines nitrate leaching and groundwater lag-times to compute well concentrations. The GW-NDST uses output from support models that simulate leached nitrate, groundwater age distributions, and nitrate reduction rates. The support models are linked through convolution to simulate nitrate transp
Paul F. Juckem, Nicholas Corson-Dosch, Laura A. Schachter, Christopher Green, Kelsie M. Ferin, Eric G. Booth, Christopher J. Kucharik, Brian P. Austin, Leon J. Kauffman

Timing and source of recharge to the Columbia River Basalt groundwater system in northeastern Oregon

Recharge to and flow within the Columbia River Basalt Group (CRBG) groundwater flow system of northeastern Oregon were characterized using isotopic, gas, and age-tracer samples from wells completed in basalt, springs, and stream base flow. Most groundwater samples were late-Pleistocene to early-Holocene; median age of well samples was 11,100 years. The relation between mean groundwater age and com
Henry M. Johnson, Kate E. Ely, Anna-Turi Maher

A conceptual site model of contaminant transport pathways from the Bremerton Naval Complex to Sinclair Inlet, Washington, 2011–21

Historical activities on the Bremerton Naval Complex (BNC) in Puget Sound, Washington, have resulted in Sinclair Inlet sediments with elevated concentrations of contaminants, including organic contaminants such as polychlorinated biphenyls and trace elements including mercury. Six U.S. Geological Survey–U.S. Navy datasets have been collected since the last major assessment, in 2013, of soil and gr
Kathleen E. Conn, Sarah E. Janssen, Chad C. Opatz, Valerie A.L. Bright

Precipitation uncertainty estimation and rainfall-runoff model calibration using iterative ensemble smoothers

The introduction of iterative ensemble smoothers (IES) for parameter calibration opens avenues for expanding parameter space in surface water hydrologic modeling. Here, we have introduced independent parameters into a model calibration experiment to estimate errors in rainfall forcing data. This approach has the potential to estimate rainfall errors using other hydrological observations and to imp
Davide Zoccatelli, Daniel B. Wright, Jeremy T. White, Michael N. Fienen, Guo Yu

Lake water temperature modeling in an era of climate change: Data sources, models, and future prospects

Lake thermal dynamics have been considerably impacted by climate change, with potential adverse effects on aquatic ecosystems. To better understand the potential impacts of future climate change on lake thermal dynamics and related processes, the use of mathematical models is essential. In this study, we provide a comprehensive review of lake water temperature modeling. We begin by discussing the
Sebastiano Piccolroaz, Senlin Zhu, Robert Ladwig, Laura Carrea, Samantha K. Oliver, Adam Piotrowski, Mariusz Ptak, Ryuichiro Shinohara, Mariusz Sojka, Richard Woolway, David Z. Zhu

Quantitative microbial risk assessment for ingestion of antibiotic resistance genes from private wells contaminated by human and livestock fecal sources

We used quantitative microbial risk assessment to estimate ingestion risk for intI1, erm(B), sul1, tet(A), tet(W), and tet(X) in private wells contaminated by human and/or livestock feces. Genes were quantified with five human-specific and six bovine-specific microbial source-tracking (MST) markers in 138 well-water samples from a rural Wisconsin county. Daily ingestion risk (probability of swallo
Tucker R. Burch, Joel P. Stokdyk, Lisa Durso, Mark A. Borchardt

Prioritizing river basins for nutrient studies

Increases in fluxes of nitrogen (N) and phosphorus (P) in the environment have led to negative impacts affecting drinking water, eutrophication, harmful algal blooms, climate change, and biodiversity loss. Because of the importance, scale, and complexity of these issues, it may be useful to consider methods for prioritizing nutrient research in representative drainage basins within a regional or n
Anthony J. Tesoriero, Dale M. Robertson, Christopher Green, John K. Böhlke, Judson Harvey, Sharon L. Qi

Peak streamflow trends in Wisconsin and their relation to changes in climate, water years 1921–2020

This study characterizes hydroclimatic variability and change in peak streamflow and daily streamflow in Wisconsin from water years 1921 through 2020. Nonstationarity in peak streamflow in Wisconsin can include monotonic trends, change points, and autocorrelation. Spatial patterns of nonstationarity in peak streamflow, daily streamflow, and monthly precipitation, temperature, and snowfall were exa
Sara B. Levin

Introduction and methods of analysis for peak streamflow trends and their relation to changes in climate in Illinois, Iowa, Michigan, Minnesota, Missouri, Montana, North Dakota, South Dakota, and Wisconsin

Flood-frequency analysis, also called peak-flow frequency or flood-flow frequency analysis, is essential to water resources management applications including critical structure design and floodplain mapping. Federal guidelines for doing flood-frequency analyses are presented in a U.S. Geological Survey Techniques and Methods Report known as Bulletin 17C. A basic assumption within Bulletin 17C is t
Karen R. Ryberg, Thomas M. Over, Sara B. Levin, David C. Heimann, Nancy A. Barth, Mackenzie K. Marti, Padraic S. O'Shea, Christopher A. Sanocki, Tara J. Williams-Sether, Harper N. Wavra, T. Roy Sando, Steven K. Sando, Milan S. Liu

Comparing single and multiple objective constrained optimization algorithms for tuning a groundwater remediation system

Groundwater flow and particle tracking models are critical tools to simulate the natural system, contaminant fate and transport, and effects of remediation. Constrained optimization uses models to systematically explore the interplay between remedial design and contaminant fate, considering uncertainty. Sequential Linear Programming (SLP) provides a design alternative addressing a single goal (e.g
Michael N. Fienen, Nicholas Corson-Dosch, Kalle L Jahn, Jeremy T. White