Skip to main content
U.S. flag

An official website of the United States government

Publications

This list of Upper Midwest Water Science Center publications spans from 1899 to present. It includes both official USGS publications and journal articles authored by our scientists. To access the full, searchable catalog of USGS publications, please visit the USGS Publications Warehouse.

Filter Total Items: 1959

Predictive models of phosphorus concentration and load in stormwater runoff from small urban residential watersheds in fall season

Urban street trees are a key part of public green infrastructure in many cities, however, leaf litter on streets is a critical biogenic source of phosphorus (P) in urban stormwater runoff during Fall. This study identified mass of street leaf litter (Mleaf) and antecedent dry days (ADD) as the top two explanatory parameters that have significant predictive power of event end-of-pipe P concentratio

Quantifying relations between altered hydrology and fish community responses for streams in Minnesota

Altered hydrology is a stressor on aquatic life for several streams in Minnesota, but quantitative relations between specific aspects of streamflow alteration and biological responses have not been developed on a statewide scale in Minnesota. Best subsets regression analysis was used to develop linear regression models that quantify relations among five categories of hydrologic explanatory metric

Assessment of mercury in sediments and waters of Grubers Grove Bay, Wisconsin

Mercury is a global contaminant that can be detrimental to wildlife and human health. Anthropogenic emissions and point sources are primarily responsible for elevated mercury concentrations in sediments and waters. Mercury can physically move and chemically transform in the environment, resulting in biomagnification of mercury, in the form of methylmercury, in the food web and causing elevated mer

Decadal trends of mercury cycling and bioaccumulation within Everglades National Park

Mercury (Hg) contamination has been a persistent concern in the Florida Everglades for over three decades due to elevated atmospheric deposition and the system's propensity for methylation and rapid bioaccumulation. Given declines in atmospheric Hg concentrations in the conterminous United States and efforts to mitigate nutrient release to the greater Everglades ecosystem, it was vital to assess h

Assessing private well contamination in Grant, Iowa, and Lafayette Counties, Wisconsin: The southwest Wisconsin groundwater and geology study

Rural residents of Grant, Iowa, and Lafayette Counties in Wisconsin rely on private wells for their water. Contaminants like nitrate and bacteria from septic systems, fertilizer, and manure can contaminate the groundwater that residents use. Groundwater is vulnerable to contamination where the soil layer is thin and the bedrock is fractured, which is the case for much of the study region. This stu

Isotopic analysis of radium geochemistry at discrete intervals in the Midwestern Cambrian-Ordovician aquifer system

Radium (Ra) is a geogenic radioactive contaminant that frequently occurs at elevated levels in the Midwestern Cambrian-Ordovician aquifer system (MCOAS). Geochemical indicators (e.g., redox conditions or total dissolved solids) can broadly characterize conditions associated with elevated Ra levels in groundwater, but do not consistently correlate to elevated Ra within specific stratigraphic horizo

Statewide quantitative microbial risk assessment for waterborne viruses, bacteria, and protozoa in public water supply wells in Minnesota

Infection risk from waterborne pathogens can be estimated via quantitative microbial risk assessment (QMRA) and forms an important consideration in the management of public groundwater systems. However, few groundwater QMRAs use site-specific hazard identification and exposure assessment, so prevailing risks in these systems remain poorly defined. We estimated the infection risk for 9 waterborne p

Areas contributing recharge to priority wells in valley-fill aquifers in the Neversink River and Rondout Creek drainage basins, New York

In southeastern New York, the villages of Ellenville, Wurtsboro, Woodridge, the hamlet of Mountain Dale, and surrounding communities in the Neversink River and Rondout Creek drainage basins rely on wells that pump groundwater from valley-fill glacial aquifers for public water supply. Glacial aquifers are vulnerable to contamination because they are highly permeable and have a shallow depth to wate

Estimated daily mean streamflow in Iowa using the Flow-Duration Curve Transfer Method StreamStats application

The U.S. Geological Survey (USGS) operates many streamgages throughout the country that provide historical and real-time daily streamflow information. Accurate estimates of daily streamflow and the percentage of time that a certain volume of streamflow occurs or is exceeded in a stream is crucial information for structure design and other activities conducted by federal, state, and local officials

Methylmercury stable isotopes: New insights on assessing aquatic food web bioaccumulation in legacy impacted regions

Through stable isotope measurements of total mercury (HgT), identification of crucial processes and transformations affecting different sources of mercury (Hg) has become possible. However, attempting to use HgT stable isotopes to track bioaccumulation of Hg sources among different food web compartments can be challenging, if not impossible, when tissues have varying methylmercury (MeHg) contents.

Identifying monitoring information needs that support the management of fish in large rivers

Management actions intended to benefit fish in large rivers can directly or indirectly affect multiple ecosystem components. Without consideration of the effects of management on non-target ecosystem components, unintended consequences may limit management efficacy. Monitoring can help clarify the effects of management actions, including on non-target ecosystem components, but only if data are col

Fate and seasonality of antimicrobial resistance genes during full-scale anaerobic digestion of cattle manure across seven livestock production facilities

Anaerobic digestion has been suggested as an intervention to attenuate antibiotic resistance genes (ARGs) in livestock manure but supporting data have typically been collected at laboratory scale. Few studies have quantified ARG fate during full-scale digestion of livestock manure. We sampled untreated manure and digestate from seven full-scale mesophilic dairy manure digesters to assess ARG fate