Chesapeake Science
Chesapeake Science
Chesapeake Bay Water-Quality Loads and Trends
Get the latest Nontidal Network and River Input Monitoring data
Get the latest Nontidal Network and River Input Monitoring data
Much of Virginia lies within the Chesapeake Bay watershed, and many of our studies are undertaken in collaboration with other U.S. Geological Survey scientists from across the Chesapeake Bay region. Browse our Chesapeake Bay-related studies below.
Filter Total Items: 23
New insights for reducing nutrient and sediment loads in agricultural watersheds prioritized for management activities
Agricultural activities and natural factors may offset nutrient and sediment reductions from management activities.
Wastewater reuse may be detrimental to smallmouth bass abundance in the Shenandoah River Watershed
Issue: Municipal and industrial wastewater effluent is an important source of water for streams and rivers, especially during periods of low flow. The reuse of wastewater effluent may become even more important if climate change exacerbates low streamflow and drought conditions. However, wastewater effluent often contains chemicals that, when chronically present, can affect the health of aquatic...
Monitoring the Effectiveness of Conservation Practices in Small Agricultural Watersheds
Farmers are an important part of the economy and heritage of the Chesapeake Bay. Farmers also act as stewards of the land and water. Across the Chesapeake Bay Watershed, members of the agricultural community are volunteering to adopt conservation practices on their land. The goal of these practices is to protect the health of the soil, local streams and rivers, and the Chesapeake Bay. These...
USGS Publications Summarize Water-Quality Trends and Drivers in Urban Streams After 10 Years of Monitoring in Fairfax County, Virginia
Issue: Degraded water quality and ecology in urban streams has been widely documented, but explanations of changing conditions over time are often unavailable. A 15-year collaborative urban stream monitoring effort between the Fairfax County Stormwater Planning Division and the U.S. Geological Survey (USGS) is ongoing and has begun to shed light on this complex issue. In a new USGS report by...
Summarizing Science to Inform Management in the Chesapeake Bay Watershed
Stakeholders can use scientific insights to address their priority water-quality concerns. The USGS works with Chesapeake Bay stakeholders to identify and address priority questions that can help inform management decisions. These scientific insights can help guide nutrient and sediment management activities undertaken by Chesapeake Bay stakeholders. This webpage summarizes recent scientific...
Science to Inform Management Priorities from Loads to Endpoints (SIMPLE)
Resource managers are working to improve water-quality in the Chesapeake to benefit the people who live in the region and the birds, fish, and other animals who rely on clean water in the watershed and the Bay. The U.S Geological Survey (USGS) supports resource managers and other Chesapeake stakeholders by providing science that informs restoration and conservation in the Chesapeake region. The...
Integrated Assessments of Potential Risks to Aquatic Organisms and Public Water Supply from Wastewater-Derived Chemical Mixtures in the Chesapeake Bay Watershed
Proper management of contaminants of emerging concern in the Chesapeake Bay region requires scientific efforts to understand the risk posed to aquatic resources from the “cocktail” of multiple contaminants that is often present. This research aims to assess the occurrence, sources, environmental impacts, biological effects, and the human health impacts of toxic contaminants in rivers.
USGS revises 2020 nontidal load and trend results
Issue: The USGS has revised loads and trends through 2020 from monitoring stations in the Chesapeake Bay Program (CBP) Nontidal Network (NTN). The original release of the results was in July 2022. During a process to implement a new software package for the next update of NTN data, the USGS discovered some questionable data values. Most of the questionable values were related to a coding...
USGS calculates loads and trends through 2021 for the nine major rivers entering Chesapeake Bay
Issue: The amount of nutrients and suspended sediment entering the Chesapeake Bay affect water-quality conditions in tidal waters. Excess nutrients contribute to algal blooms that lower the oxygen levels in tidal waters that are important for fish and shellfish. The algal blooms, along with suspended sediment, also decrease visibility in shallow waters for submerged aquatic grasses. The grasses...
Progress Through Partnerships - Chesapeake Bay Vertical Land Motion Project
Chesapeake Bay region has the highest rate of relative sea-level rise on the Atlantic Coast of the United States, and data indicate that vertical land motion in the form of subsidence has been responsible for more than half the relative sea-level rise measured in the Chesapeake Bay region. The Chesapeake Bay Vertical Land Motion Project is a cooperative effort between the USGS and our many...
Tracking Status and Trends in Seven Key Indicators of River and Stream Condition in the Chesapeake Bay Watershed
Identifying and tracking the status of, and trends in, stream health within the Chesapeake Bay watershed is essential to understanding the past, present, and future trajectory of the watershed’s resources and ecological condition. A team of USGS ecosystem scientists is meeting this need with an initiative to track the status of, and trends in, key indicators of the health of non-tidal freshwater...
Summarizing Scientific Findings for Common Stakeholder Questions to Inform Nutrient and Sediment Management Activities in the Chesapeake Bay Watershed
Issue: The Chesapeake Bay Program (CBP) partnership is striving to improve water-quality conditions in the Bay by using a variety of management strategies to reduce nutrient and sediment loads. The partnership uses monitoring results and modeling tools to implement management strategies, relying on the scientific community to synthesize existing information and direct new research to address...