Skip to main content
U.S. flag

An official website of the United States government

Land Motion

Though we can't always sense it, everything is moving, including the ground beneath us. In eastern Virginia, the land is sinking faster than anywhere else on the east coast of the US due to groundwater withdrawals and deep earth processes. USGS scientists are using a variety of methods to measure and understand land motion in Virginia. Browse our land motion studies below.

Filter Total Items: 6

The Virginia Extensometer Network

Borehole extensometers are instruments that monitor land subsidence caused by aquifer compaction. They provide precise, high-resolution measurements of changes in aquifer-system thickness. These changes in aquifer-system thickness contribute to vertical land motion (VLM) across the Virginia Coastal Plain, and are driven primarily by groundwater level decline due to human water usage. The Virginia...
The Virginia Extensometer Network

The Virginia Extensometer Network

Borehole extensometers are instruments that monitor land subsidence caused by aquifer compaction. They provide precise, high-resolution measurements of changes in aquifer-system thickness. These changes in aquifer-system thickness contribute to vertical land motion (VLM) across the Virginia Coastal Plain, and are driven primarily by groundwater level decline due to human water usage. The Virginia...
Learn More

Progress Through Partnerships - Chesapeake Bay Vertical Land Motion Project

Chesapeake Bay region has the highest rate of relative sea-level rise on the Atlantic Coast of the United States, and data indicate that vertical land motion in the form of subsidence has been responsible for more than half the relative sea-level rise measured in the Chesapeake Bay region. The Chesapeake Bay Vertical Land Motion Project is a cooperative effort between the USGS and our many...
Progress Through Partnerships - Chesapeake Bay Vertical Land Motion Project

Progress Through Partnerships - Chesapeake Bay Vertical Land Motion Project

Chesapeake Bay region has the highest rate of relative sea-level rise on the Atlantic Coast of the United States, and data indicate that vertical land motion in the form of subsidence has been responsible for more than half the relative sea-level rise measured in the Chesapeake Bay region. The Chesapeake Bay Vertical Land Motion Project is a cooperative effort between the USGS and our many...
Learn More

Land Subsidence on the Virginia Coastal Plain

Land subsidence is a loss of ground elevation, often experienced as the ground slowly sinking over the course of years. In eastern Virginia, high rates of groundwater use is a major factor in the land subsidence affecting the area. The Virginia-West Virginia Water Science Center, with the help of our partners, has been monitoring land subsidence in the Virginia Coastal Plain since 1979 using a...
Land Subsidence on the Virginia Coastal Plain

Land Subsidence on the Virginia Coastal Plain

Land subsidence is a loss of ground elevation, often experienced as the ground slowly sinking over the course of years. In eastern Virginia, high rates of groundwater use is a major factor in the land subsidence affecting the area. The Virginia-West Virginia Water Science Center, with the help of our partners, has been monitoring land subsidence in the Virginia Coastal Plain since 1979 using a...
Learn More

New Crowd Sourcing Will Contribute to Study of Land Subsidence and Sea-Level Rise in the Chesapeake Bay

Issue: Chesapeake Bay region has the highest rate of relative sea-level rise on the Atlantic Coast of the United States. Scientists use the term relative sea-level rise to describe the change in ocean height relative to changes in land elevation. Data indicate that vertical land motion in the form of subsidence has been responsible for more than half the relative sea-level rise measured in the...
New Crowd Sourcing Will Contribute to Study of Land Subsidence and Sea-Level Rise in the Chesapeake Bay

New Crowd Sourcing Will Contribute to Study of Land Subsidence and Sea-Level Rise in the Chesapeake Bay

Issue: Chesapeake Bay region has the highest rate of relative sea-level rise on the Atlantic Coast of the United States. Scientists use the term relative sea-level rise to describe the change in ocean height relative to changes in land elevation. Data indicate that vertical land motion in the form of subsidence has been responsible for more than half the relative sea-level rise measured in the...
Learn More

Tripod-palooza—USGS Collaborates with Federal, State, and Academic Partners to Support Coastal Resiliency in the Wider Chesapeake Bay Area

In the Chesapeake Bay area, the Virginia and West Virginia Water Science Center is partnering with over a dozen organizations in a pilot project this fall, resulting in the establishment of a baseline reference for an ongoing effort in monitoring coastal subsidence.
Tripod-palooza—USGS Collaborates with Federal, State, and Academic Partners to Support Coastal Resiliency in the Wider Chesapeake Bay Area

Tripod-palooza—USGS Collaborates with Federal, State, and Academic Partners to Support Coastal Resiliency in the Wider Chesapeake Bay Area

In the Chesapeake Bay area, the Virginia and West Virginia Water Science Center is partnering with over a dozen organizations in a pilot project this fall, resulting in the establishment of a baseline reference for an ongoing effort in monitoring coastal subsidence.
Learn More

Hampton Roads Benchmark Monitoring Network

The southern Chesapeake Bay region is experiencing land subsidence along with rising sea levels, both of which can contribute to coastal flooding. The rates at which these two processes are occurring are not exactly known. Mapping of land elevation change requires ground-truth survey data at multiple locations that are accurate and precise. With the exception of a few CORS sites that have...
Hampton Roads Benchmark Monitoring Network

Hampton Roads Benchmark Monitoring Network

The southern Chesapeake Bay region is experiencing land subsidence along with rising sea levels, both of which can contribute to coastal flooding. The rates at which these two processes are occurring are not exactly known. Mapping of land elevation change requires ground-truth survey data at multiple locations that are accurate and precise. With the exception of a few CORS sites that have...
Learn More
Was this page helpful?