Skip to main content
U.S. flag

An official website of the United States government


OWML Publications

Filter Total Items: 28

Cyanobacteria, cyanotoxin synthetase gene, and cyanotoxin occurrence among selected large river sites of the conterminous United States, 2017–18

The U.S. Geological Survey measured cyanobacteria, cyanotoxin synthetase genes, and cyanotoxins at 11 river sites throughout the conterminous United States in a multiyear pilot study during 2017–19 through the National Water Quality Assessment Project to better understand the occurrence of cyanobacteria and cyanotoxins in large inland and coastal rivers. This report focuses on the first 2 years of

Using microbial source tracking to identify fecal contamination sources in an embayment in Hempstead Harbor on Long Island, New York

The U.S. Geological Survey worked collaboratively with the New York State Department of Environmental Conservation to assess the potential sources of fecal contamination entering Hempstead Harbor, an embayment on the northern shore of Nassau County, Long Island, New York. Water samples are routinely collected by the New York State Department of Environmental Conservation in the harbor and analyzed

Evaluation of a modified rapid viability-polymerase chain reaction method for Bacillus atrophaeus spores in water matrices

A rapid method that provides information on the viability of organisms is needed to protect public health and ensure that remediation efforts following a release of a biological agent are effective. The rapid viability-polymerase chain reaction (RV-PCR) method combines broth culture and molecular methods to provide results on whether viable organisms are present in less than 15 h. In this study, a

Overview and methodology for a study to identify fecal contamination sources using microbial source tracking in seven embayments on Long Island, New York

Between June 2018 and July 2019, the U.S. Geological Survey collaborated with the New York State Department of Environmental Conservation to analyze water quality in seven embayments on Long Island, New York, for a study to examine fecal contamination using microbial source tracking. This report documents the approach, methodology, and quality-assurance data used in the study. All samples and fiel

Cyanotoxin mixture models: Relating environmental variables and toxin co-occurrence to human exposure risk

Toxic cyanobacterial blooms, often containing multiple toxins, are a serious public health issue. However, there are no known models that predict a cyanotoxin mixture (anatoxin-a, microcystin, saxitoxin). This paper presents two cyanotoxin mixture models (MIX) and compares them to two microcystin (MC) models from data collected in 2016–2017 from three recurring cyanobacterial bloom locations in Ka

Assessment of water quality and fecal contamination sources at Hook Pond, East Hampton, New York

SummaryThe U.S. Geological Survey, in cooperation with the Village of East Hampton, New York, conducted a 1-year study from August 2017 to August 2018 to provide data necessary to improve understanding of the sources of nutrients and pathogens to Hook Pond watershed to allow for possible mitigation or reduction of loads. Chronic eutrophication and recent concern over harmful cyanobacteria in Hook

Predicting microcystin concentration action-level exceedances resulting from cyanobacterial blooms in selected lake sites in Ohio

Cyanobacterial harmful algal blooms and the toxins they produce are a global water-quality problem. Monitoring and prediction tools are needed to quickly predict cyanotoxin action-level exceedances in recreational and drinking waters used by the public. To address this need, data were collected at eight locations in Ohio, USA, to identify factors significantly related to observed concentrations of

Nowcasting methods for determining microbiological water quality at recreational beaches and drinking-water source waters

Nowcasts are tools used to provide timely and accurate water-quality assessments of threats to drinking-water and recreational resources from fecal contamination or cyanobacterial harmful algal blooms. They use mathematical models and techniques to provide near-real-time estimates of fecal-indicator bacteria (FIB) and cyanotoxin concentrations. Techniques include logic-based thresholds, decision t

Pilot-scale testing of dairy manure treatments to reduce nutrient transport from land application, northwest Ohio, 2015–17

Manure and wastewater from large livestock operations have the potential to negatively affect surface water and groundwater, including the eutrophication of surface waters and harmful algal blooms. In the Western Lake Erie Basin, where there is a high density of animal agriculture, harmful algal blooms have been attributed, in part, to phosphorus loading from dairy manure and fertilizer applicatio

Cyanotoxin occurrence in large rivers of the United States

Cyanotoxins occur in rivers worldwide but are understudied in lotic ecosystems relative to lakes and reservoirs. Eleven large river sites located throughout the United States were sampled during June–September 2017 to determine the occurrence of cyanobacteria with known cyanotoxin-producing strains, cyanotoxin synthetase genes, and cyanotoxins. Chlorophyll-a concentrations spanned the range from o

Phytoplankton community and algal toxicity at a recurring bloom in Sullivan Bay, Kabetogama Lake, Minnesota, USA

Kabetogama Lake in Voyageurs National Park, Minnesota, USA suffers from recurring late summer algal blooms that often contain toxin-producing cyanobacteria. Previous research identified the toxin microcystin in blooms, but we wanted to better understand how the algal and cyanobacterial community changed throughout an open water season and how changes in community structure were related to toxin pr

Spatial and temporal distribution of bacterial indicators and microbial-source tracking within Tumacácori National Historical Park and the upper Santa Cruz River, southern Arizona and northern Mexico, 2015–2016

Tumacácori National Historical Park (TUMA) in southern Arizona protects the culturally important Mission San José de Tumacácori, while also managing a part of the ecologically diverse riparian corridor of the Santa Cruz River. The quality of the water flowing through depends solely on upstream watershed activities, and among the water-quality issues concerning TUMA is the microbiological pathogens