Skip to main content
U.S. flag

An official website of the United States government

North Central

The North Central Climate Adaptation Science Center (NC CASC) fosters applied research in support of Tribal, federal, state, and local natural resource management across the north central U.S. Their research focuses on habitat loss, wildfires, water availability, invasive species, wildlife phenology, and disease in sagebrush, freshwater, grassland, and high elevation ecosystems.

Filter Total Items: 132

Climate-Informed Disease Threat Assessment for Montana’s Species of Greatest Conservation Need

Project Overview Infectious disease poses a growing threat to wildlife and human health, and managing disease threats is complicated by climatic changes that can change levels of disease risk. Researchers supported by this North Central CASC project will co-develop a method to rank wildlife disease threats under climate change, providing critical useable information to Montana’s wildlife manager
link

Climate-Informed Disease Threat Assessment for Montana’s Species of Greatest Conservation Need

Project Overview Infectious disease poses a growing threat to wildlife and human health, and managing disease threats is complicated by climatic changes that can change levels of disease risk. Researchers supported by this North Central CASC project will co-develop a method to rank wildlife disease threats under climate change, providing critical useable information to Montana’s wildlife manager
Learn More

Evaluating Corridor Conservation as a Drought Resiliency Strategy for Mule Deer Across a Gradient in Human Development

Project Overview Migratory big game species, like mule deer, are at risk due to human development and more frequent drought events that can limit access to food resources during migration. To address this, researchers supported by this North Central CASC project will collaborate with State, Tribal, and Federal agencies to examine the effectiveness of corridor conservation as a strategy to improve
link

Evaluating Corridor Conservation as a Drought Resiliency Strategy for Mule Deer Across a Gradient in Human Development

Project Overview Migratory big game species, like mule deer, are at risk due to human development and more frequent drought events that can limit access to food resources during migration. To address this, researchers supported by this North Central CASC project will collaborate with State, Tribal, and Federal agencies to examine the effectiveness of corridor conservation as a strategy to improve
Learn More

Identifying the Environmental Limits of Aquatic Species in Prairie Streams to Build Climate Resilience

Project Overview Climate change and human activities are threatening many sensitive aquatic species in prairie streams across the Great Plains region. Researchers supported by this North Central CASC project will combine and analyze data collected independently by Great Plains states to identify thresholds of environmental change that may lead to species loss and changes in aquatic communities. Th
link

Identifying the Environmental Limits of Aquatic Species in Prairie Streams to Build Climate Resilience

Project Overview Climate change and human activities are threatening many sensitive aquatic species in prairie streams across the Great Plains region. Researchers supported by this North Central CASC project will combine and analyze data collected independently by Great Plains states to identify thresholds of environmental change that may lead to species loss and changes in aquatic communities. Th
Learn More

Informing Management Options for grizzly bears in a Changing Greater Yellowstone Ecosystem

Project Overview The iconic grizzly bear of the Greater Yellowstone Ecosystem has exhibited a remarkable recovery in response to concerted conservation actions implemented since its listing as threatened under the Endangered Species Act in 1975. However, information regarding the potential effects and timing of climate change in conjunction with increasing human recreation and development will be
link

Informing Management Options for grizzly bears in a Changing Greater Yellowstone Ecosystem

Project Overview The iconic grizzly bear of the Greater Yellowstone Ecosystem has exhibited a remarkable recovery in response to concerted conservation actions implemented since its listing as threatened under the Endangered Species Act in 1975. However, information regarding the potential effects and timing of climate change in conjunction with increasing human recreation and development will be
Learn More

Leveraging Existing Data to Assess the Vulnerability of Native Salmonid Populations in the Greater Yellowstone Area

Project Overview: Native Yellowstone cutthroat trout and mountain whitefish in the Greater Yellowstone Ecosystem (GYA) are ecologically and socio-economically important species, but are threatened by drought, rising water temperatures, habitat loss, and non-native species. Researchers supported by this North Central CASC project will use climate data and extensive population records to assess the
link

Leveraging Existing Data to Assess the Vulnerability of Native Salmonid Populations in the Greater Yellowstone Area

Project Overview: Native Yellowstone cutthroat trout and mountain whitefish in the Greater Yellowstone Ecosystem (GYA) are ecologically and socio-economically important species, but are threatened by drought, rising water temperatures, habitat loss, and non-native species. Researchers supported by this North Central CASC project will use climate data and extensive population records to assess the
Learn More

Small Prairie Stream Health Within Fort Berthold Indian Reservation

Project Overview The Fort Berthold Indian Reservation faces challenges in maintaining stream health due to recent extreme weather events, oil and gas development, and row crop expansion. Researchers supported by this North Central CASC project will assess how these changes affect stream health while providing career development for undergraduate researchers from Nueta Hidatsa Sahnish College (NHSC
link

Small Prairie Stream Health Within Fort Berthold Indian Reservation

Project Overview The Fort Berthold Indian Reservation faces challenges in maintaining stream health due to recent extreme weather events, oil and gas development, and row crop expansion. Researchers supported by this North Central CASC project will assess how these changes affect stream health while providing career development for undergraduate researchers from Nueta Hidatsa Sahnish College (NHSC
Learn More

Developing science syntheses to facilitate climate-informed land management decisions and NEPA analyses on rangelands in the sagebrush biome

The National Environmental Policy Act (NEPA) requires federal public land managers to assess potential environmental impacts of proposed actions. The USGS, Bureau of Land Management, US Fish and Wildlife Service, Colorado State University, and North Central Climate Adaptation Science Center are working together to develop science syntheses that can facilitate considerations of climate change in...
link

Developing science syntheses to facilitate climate-informed land management decisions and NEPA analyses on rangelands in the sagebrush biome

The National Environmental Policy Act (NEPA) requires federal public land managers to assess potential environmental impacts of proposed actions. The USGS, Bureau of Land Management, US Fish and Wildlife Service, Colorado State University, and North Central Climate Adaptation Science Center are working together to develop science syntheses that can facilitate considerations of climate change in...
Learn More

Soil-climate for Managing Sagebrush Ecosystems

Soil-climate describes the temperature and moisture conditions important for plant growth and function. Soil condition patterns determine which vegetation is most abundant, thus controlling which habitats, invasive species, fuels, and economic activities are present in a region. Here, we use a model to simulate the vertical movement of water in a soil profile to provide insights into landscape...
link

Soil-climate for Managing Sagebrush Ecosystems

Soil-climate describes the temperature and moisture conditions important for plant growth and function. Soil condition patterns determine which vegetation is most abundant, thus controlling which habitats, invasive species, fuels, and economic activities are present in a region. Here, we use a model to simulate the vertical movement of water in a soil profile to provide insights into landscape...
Learn More

Mapping Grassland Bird Community Distribution under a Changing Climate

Researchers from the U.S. Geological Survey, the U.S. Department of Agriculture-Agricultural Research Service, and Oklahoma State University are studying the distribution of grassland bird communities across the western Great Plains to anticipate how species distributions may respond to a changing climate.
link

Mapping Grassland Bird Community Distribution under a Changing Climate

Researchers from the U.S. Geological Survey, the U.S. Department of Agriculture-Agricultural Research Service, and Oklahoma State University are studying the distribution of grassland bird communities across the western Great Plains to anticipate how species distributions may respond to a changing climate.
Learn More

A Decision Support Tool for Prairie Dog and Cattle Coexistence in a Changing Climate

Project Overview Prairie dog colonies in North America’s Central Grasslands undergo cycles of collapse and recovery caused by the non-native sylvatic plague, and each phase of the cycle negatively affects wildlife or livestock. Researchers supported by this North Central-CASC project will develop a decision-support web tool for users to predict prairie dog colony dynamics under changing climatic c
link

A Decision Support Tool for Prairie Dog and Cattle Coexistence in a Changing Climate

Project Overview Prairie dog colonies in North America’s Central Grasslands undergo cycles of collapse and recovery caused by the non-native sylvatic plague, and each phase of the cycle negatively affects wildlife or livestock. Researchers supported by this North Central-CASC project will develop a decision-support web tool for users to predict prairie dog colony dynamics under changing climatic c
Learn More

Assessing the Impacts of Rangeland Restoration on Carbon Sequestration and Co-Benefits for Drought Resilience in the Sagebrush Steppe and Mixed Grass Prairie

Invasions of exotic annual grasses (EAGs like cheatgrass have caused major losses of native shrubs and grasses in western U.S. rangelands. They also decrease the productivity and carbon storage in these ecosystems, which is expected to create dryer soils that may cause further losses in plant productivity. This cycle is the hallmark of desertification – or, fertile lands turning into deserts. Ma
link

Assessing the Impacts of Rangeland Restoration on Carbon Sequestration and Co-Benefits for Drought Resilience in the Sagebrush Steppe and Mixed Grass Prairie

Invasions of exotic annual grasses (EAGs like cheatgrass have caused major losses of native shrubs and grasses in western U.S. rangelands. They also decrease the productivity and carbon storage in these ecosystems, which is expected to create dryer soils that may cause further losses in plant productivity. This cycle is the hallmark of desertification – or, fertile lands turning into deserts. Ma
Learn More

Climate Adaptation in North Central Mountain Ecosystems

Mountain ecosystems are prioritized by the North Central CASC due to the provided water resources, recreation opportunities, and endemic biodiversity. Mountain ecosystems are vulnerable to climate change due to elevation-dependent warming, loss of snowpack, reduction in physical area at higher elevations, and general sensitivity of alpine species to climate. Current climate adaptation strategies f
link

Climate Adaptation in North Central Mountain Ecosystems

Mountain ecosystems are prioritized by the North Central CASC due to the provided water resources, recreation opportunities, and endemic biodiversity. Mountain ecosystems are vulnerable to climate change due to elevation-dependent warming, loss of snowpack, reduction in physical area at higher elevations, and general sensitivity of alpine species to climate. Current climate adaptation strategies f
Learn More
Was this page helpful?