Skip to main content
U.S. flag

An official website of the United States government


The U.S. Geological Survey Publications Warehouse is a citation clearinghouse that provides access to over 160,000 publications written by USGS scientists over the century-plus history of the bureau. Below is a list of select scientific publications and information products from the Gulf of Mexico region. 

Filter Total Items: 155

Impacts of the Deepwater Horizon oil spill on deep-sea coral-associated sediment communities

Cold-water corals support distinct populations of infauna within surrounding sediments that provide vital ecosystem functions and services in the deep sea. Yet due to their sedentary existence, infauna are vulnerable to perturbation and contaminant exposure because they are unable to escape disturbance events. While multiple deep-sea coral habitats were injured by the 2010 Deepwater Horizon (DWH)

Marsh canopy structure changes and the Deepwater Horizon oil spill

Marsh canopy structure was mapped yearly from 2009 to 2012 in the Barataria Bay, Louisiana coastal region that was impacted by the 2010 Deepwater Horizon (DWH) oil spill. Based on the previously demonstrated capability of NASA's UAVSAR polarimetric synthetic aperture radar (PolSAR) image data to map Spartina alterniflora marsh canopy structure, structure maps combining the leaf area index (LAI) an

A modeling study of the impacts of Mississippi River diversion and sea-level rise on water quality of a deltaic estuary

Freshwater and sediment management in estuaries affects water quality, particularly in deltaic estuaries. Furthermore, climate change-induced sea-level rise (SLR) and land subsidence also affect estuarine water quality by changing salinity, circulation, stratification, sedimentation, erosion, residence time, and other physical and ecological processes. However, little is known about how the magnit

Methane emissions from oceans, coasts, and freshwater habitats: New perspectives and feedbacks on climate

Methane is a powerful greenhouse gas, and atmospheric concentrations have risen 2.5 times since the beginning of the Industrial age. While much of this increase is attributed to anthropogenic sources, natural sources, which contribute between 35% and 50% of global methane emissions, are thought to have a role in the atmospheric methane increase, in part due to human influences. Methane emissions f

Marine ecoregion and Deepwater Horizon oil spill affect recruitment and population structure of a salt marsh snail

Marine species with planktonic larvae often have high spatial and temporal variation in recruitment that leads to subsequent variation in the ecology of benthic adults. Using a combination of published and unpublished data, we compared the population structure of the salt marsh snail, Littoraria irrorata, between the South Atlantic Bight and the Gulf Coast of the United States to infer geographic

Wetland shoreline recession in the Mississippi River Delta from petroleum oiling and cyclonic storms

We evaluate the relative impact of petroleum spill and storm surge on near-shore wetland loss by quantifying the lateral movement of coastal shores in upper Barataria Bay, Louisiana (USA), between June 2009 and October 2012, a study period that extends from the year prior to the Deepwater Horizon spill to 2.5 years following the spill. We document a distinctly different pattern of shoreline loss i

Biomarkers reveal sea turtles remained in oiled areas following the Deepwater Horizon oil spill

Assessments of large-scale disasters, such as the Deepwater Horizon oil spill, are problematic because while measurements of post-disturbance conditions are common, measurements of pre-disturbance baselines are only rarely available. Without adequate observations of pre-disaster organismal and environmental conditions, it is impossible to assess the impact of such catastrophes on animal population

Mapping changing distributions of dominant species in oil-contaminated salt marshes of Louisiana using imaging spectroscopy

The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in U.S. history. Monitoring subsequent change in marsh plant community distributions is critical to assess ecosystem impacts and to establish future coastal management priorities. Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), offer the spectral a

Analysis of seafloor change at Breton Island, Gosier Shoals, and surrounding waters, 1869–2014, Breton National Wildlife Refuge, Louisiana

Characterizing bathymetric change in coastal environments is an important component in understanding shoreline evolution, especially along barrier island platforms. Bathymetric change is a function of the regional sediment budget, long-term wave and current patterns, and episodic impact from high-energy events such as storms. Human modifications may also cause changes in seafloor elevation. This s

Geology and biology of the "Sticky Grounds," shelf-margin carbonate mounds, and mesophotic ecosystem in the eastern Gulf of Mexico

Shelf-margin carbonate mounds in water depths of 116–135 m in the eastern Gulf of Mexico along the central west Florida shelf were investigated using swath bathymetry, side-scan sonar, sub-bottom imaging, rock dredging, and submersible dives. These enigmatic structures, known to fisherman as the “Sticky Grounds”, trend along slope, are 5–15 m in relief with base diameters of 5–30 m, and suggest wi

Growth rates and ages of deep-sea corals impacted by the Deepwater Horizon oil spill

The impact of the April 2010 Deepwater Horizon (DWH) spill on deep-sea coral communities in the Gulf of Mexico (GoM) is still under investigation, as is the potential for these communities to recover. Impacts from the spill include observation of corals covered with flocculent material, with bare skeleton, excessive mucous production, sloughing tissue, and subsequent colonization of damaged areas

Analysis of shoreline and geomorphic change for Breton Island, Louisiana, from 1869 to 2014

Many barrier islands in the United States are eroding and losing elevation substantively because of storm surge, waves, and sea-level changes. This is particularly true for the deltaic barrier system in Louisiana. Breton Island is near the mouth of the Mississippi River at the southern end of the Chandeleur barrier island chain in southeast Louisiana. This report expands on previous geomorphic stu