Skip to main content
U.S. flag

An official website of the United States government


The U.S. Geological Survey Publications Warehouse is a citation clearinghouse that provides access to over 160,000 publications written by USGS scientists over the century-plus history of the bureau. Below is a list of select scientific publications and information products from the Gulf of Mexico region. 

Filter Total Items: 145

Geology and biology of the "Sticky Grounds," shelf-margin carbonate mounds, and mesophotic ecosystem in the eastern Gulf of Mexico

Shelf-margin carbonate mounds in water depths of 116–135 m in the eastern Gulf of Mexico along the central west Florida shelf were investigated using swath bathymetry, side-scan sonar, sub-bottom imaging, rock dredging, and submersible dives. These enigmatic structures, known to fisherman as the “Sticky Grounds”, trend along slope, are 5–15 m in relief with base diameters of 5–30 m, and suggest wi

Growth rates and ages of deep-sea corals impacted by the Deepwater Horizon oil spill

The impact of the April 2010 Deepwater Horizon (DWH) spill on deep-sea coral communities in the Gulf of Mexico (GoM) is still under investigation, as is the potential for these communities to recover. Impacts from the spill include observation of corals covered with flocculent material, with bare skeleton, excessive mucous production, sloughing tissue, and subsequent colonization of damaged areas

Analysis of shoreline and geomorphic change for Breton Island, Louisiana, from 1869 to 2014

Many barrier islands in the United States are eroding and losing elevation substantively because of storm surge, waves, and sea-level changes. This is particularly true for the deltaic barrier system in Louisiana. Breton Island is near the mouth of the Mississippi River at the southern end of the Chandeleur barrier island chain in southeast Louisiana. This report expands on previous geomorphic stu

ECOGIG: Oil spill effects on deep-sea corals through the lenses of natural hydrocarbon seeps and long time series

The 2015 Ecosystem Impacts of Oil and Gas Inputs to the Gulf (ECOGIG) expedition was a continuation of a three-year partnership between our Gulf of Mexico Research Institute-funded research consortium and the Ocean Exploration Trust to study the effects of oil and dispersant on corals and closely related communities affected by the 2010 Deepwater Horizon oil spill (White et al., 2012, 2014; Hsing

Migratory corridors of adult female Kemp’s ridley turtles in the Gulf of Mexico

For many marine species, locations of migratory pathways are not well defined. We used satellite telemetry and switching state-space modeling (SSM) to define the migratory corridor used by Kemp's ridley turtles (Lepidochelys kempii) in the Gulf of Mexico. The turtles were tagged after nesting at Padre Island National Seashore, Texas, USA from 1997 to 2014 (PAIS; n = 80); Rancho Nuevo, Tamaulipas,

Oil slick morphology derived from AVIRIS measurements of the Deepwater Horizon oil spill: Implications for spatial resolution requirements of remote sensors

Using fine spatial resolution (~ 7.6 m) hyperspectral AVIRIS data collected over the Deepwater Horizon oil spill in the Gulf of Mexico, we statistically estimated slick lengths, widths and length/width ratios to characterize oil slick morphology for different thickness classes. For all AVIRIS-detected oil slicks (N = 52,100 continuous features) binned into four thickness classes (≤ 50 μm but thick

Impact of Deepwater Horizon Spill on food supply to deep-sea benthos communities

Deep-sea ecosystems encompass unique and often fragile communities that are sensitive to a variety of anthropogenic and natural impacts. After the 2010 Deepwater Horizon (DWH) oil spill, sampling efforts documented the acute impact of the spill on some deep-sea coral colonies. To investigate the impact of the DWH spill on quality and quantity of biomass delivered to the deep-sea, a suite of geoche

Natural and unnatural oil slicks in the Gulf of Mexico

When wind speeds are 2 – 10 m s−1, reflective contrasts in the ocean surface make oil slicks visible to synthetic aperture radar (SAR) under all sky conditions. Neural network analysis of satellite SAR images quantified the magnitude and distribution of surface oil in the Gulf of Mexico from persistent, natural seeps and from the Deepwater Horizon (DWH) discharge. This analysis identified 914 natu

Home range and habitat use of juvenile green turtles <i>(Chelonia mydas)</i> in the northern Gulf of Mexico

Background: For imperiled marine turtles, use of satellite telemetry has proven to be an effective method in determining long distance movements. However, the large size of the tag, relatively high cost and low spatial resolution of this method make it more difficult to examine fine-scale movements of individuals, particularly at foraging grounds where animals are frequently submerged. Acoustic te

Incorporating future change into current conservation planning: Evaluating tidal saline wetland migration along the U.S. Gulf of Mexico coast under alternative sea-level rise and urbanization scenarios

In this study, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, quantified the potential for landward migration of tidal saline wetlands along the U.S. Gulf of Mexico coast under alternative future sea-level rise and urbanization scenarios. Our analyses focused exclusively on tidal saline wetlands (that is, mangrove forests, salt marshes, and salt flats), and we

Discharge, suspended sediment, and salinity in the Gulf Intracoastal Waterway and adjacent surface waters in South-Central Louisiana, 1997–2008

Discharge, suspended sediment, and salinity data collected between 1997 and 2008 indicate that the Gulf Intracoastal Waterway (GIWW) is an important distributary of river water and suspended sediments to coastal wetlands in south-central coastal Louisiana. Following natural hydraulic gradients, the GIWW passively distributes freshwater and suspended sediments from the Atchafalaya River to areas at

Structural classification of marshes with Polarimetric SAR highlighting the temporal mapping of marshes exposed to oil

Empirical relationships between field-derived Leaf Area Index (LAI) and Leaf Angle Distribution (LAD) and polarimetric synthetic aperture radar (PolSAR) based biophysical indicators were created and applied to map S. alterniflora marsh canopy structure. PolSAR and field data were collected near concurrently in the summers of 2010, 2011, and 2012 in coastal marshes, and PolSAR data alone were acqui