Mineral Resource Applications
Mineral Resource Applications
Filter Total Items: 14
Source, transport and deposition of critical minerals using trace metal and isotope systematics: Denver High Resolution Laboratory
The project objective is to develop and apply solution and in situ isotopic and trace element methods to emerging research opportunities to gain a better understanding of the processes controlling critical mineral deposits, metal mobility, and other geological inquiries.
Interdisciplinary Methods and Applications in Geophysics (IMAGe)
The project focuses on the development of novel geophysical techniques that improve our ability to understand Earth's subsurface, with broad relevance to the Mineral Resources Program and the USGS Science Strategy. Our goal is to develop and maintain state-of-the art geophysical capabilities that support the diverse science needs of USGS projects that aim to meet the challenges of the 21st century...
Isotope and Chemical Methods for Mineral and Geoenvironmental Assessments and Support of USGS Science Strategy
The Project objective is to facilitate the full potential of stable isotope (C,H,N,O,S), noble gas isotope (He, Ar, Ne, Ar, Kr, Xe), active gas geochemistry (CO2, H2S, SO2, CH4, HF, HCl, N2, H2, organics, light hydrocarbons), and solute geochemistry measurements of minerals and fluids (including single fluid inclusions) in multidisciplinary studies of fundamental processes that affect mineral...
Systems Approach to Critical Minerals Inventory, Research, and Assessment
This project supports the Earth Mapping Resources Initiative (EarthMRI) by developing a mineral systems approach for defining focus areas. This project is investigating domestic sources of critical minerals in three sequential stages: inventory, research, and assessment. 1) Inventory the abundance of critical minerals in ore, minerals, and processed materials from major deposits in each system...
Geophysical Mapping of Geologic Systems Host to Critical Mineral Deposits, Southern Midcontinent, US
The objective of this project is to use high-resolution state-of-the-art airborne and regional ground geophysical methods to map an underexplored region of the southern Midcontinent that is important to economic and critical mineral deposits.
21st Century Prospecting: AI-assisted Surveying of Critical Mineral Potential
The USGS Mineral Resources Program entered a partnership with the Defense Advanced Research Project Agency (DARPA). The partnership objective is to accelerate advances in science for understanding critical minerals, assessing unknown resources, and increase mineral security for the Nation so USGS can more efficiently assess critical mineral deposits within the United States.
USMIN Mineral Deposit Database
Our objective is to develop a national-scale, geospatial database that is the authoritative source of the most important mines, mineral deposits, and mineral districts of the United States.
Hyperspectral Imaging of Mineral Resources from New and Old Origins: Minerals for the Nation’s Economy and Utilization of Legacy Mine Lands
This project will produce maps of surface mineralogy at 15 m spatial resolution covering the largest contiguous area of hyperspectral imagery that has ever been assembled for the U.S., over 380,000 sq. km. in California and Nevada. We are developing new methods to apply these data to map critical minerals, including minerals critical for battery fabrication, and to evaluate resources available...
Geophysical Studies on the Architecture of Large Igneous Systems Hosting Magmatic Ore Deposits
Platinum group elements, also known as PGEs, are a group of elements that have specific properties which make them useful for various applications in industry. One geologic setting that contains large concentrations of platinum group elements is layered mafic intrusions. This project will use new and preexisting geophysical datasets to characterize the internal structure of layered intrusions...
Geophysics of Precambrian Terranes, Upper Midwest and Rocky Mountains
The project objective is to provide follow-up geophysical ground data acquisition and interpretation for areas involving Precambrian geologic settings in the Upper Midwest and Rocky Mountains. The project is designed fill gaps and to complement the high-quality aeromagnetic acquired during the USGS Earth Mapping Resources Initiative (Earth MRI).
Geophysics of the Midcontinent Rift Region
The Midcontinent Rift system and surrounding Precambrian rocks are known to host highly significant mineral resources. Our project objectives are to increase understanding of this system through the integration of new and legacy geophysical data with geochemical and borehole data, map the lithology and structure of PreCambrian rocks, and develop an integrated 3D geologic model of the region.
Non-Traditional Stable Isotopes
Understanding the genesis of ore deposits and their behavior in the environment is a subject of great importance to the Nation. A relatively new tool to aid in these efforts to investigate the origin and environmental effects of ore deposits is the use of "heavy" metal stable isotopes. Our research objectives are to utilize various isotopic systems to advance our understanding of ore genesis and...