The global ocean is a significant carbon sink, absorbing about a third of all atmospheric carbon dioxide (CO2) emissions (Gruber et al., 2019).
Videos
Pacific Coastal and Marine Science Center videos.
The global ocean is a significant carbon sink, absorbing about a third of all atmospheric carbon dioxide (CO2) emissions (Gruber et al., 2019).

The global ocean is a significant carbon sink, absorbing about a third of all atmospheric carbon dioxide (CO2) emissions (Gruber et al., 2019).
The global ocean is a significant carbon sink, absorbing about a third of all atmospheric carbon dioxide (CO2) emissions (Gruber et al., 2019).
Most of the world’s beaches have regular cycles of erosion and recovery, but new USGS research is showing that these cycles may be considerably different from common perceptions.
Most of the world’s beaches have regular cycles of erosion and recovery, but new USGS research is showing that these cycles may be considerably different from common perceptions.

Most of the world’s beaches have regular cycles of erosion and recovery, but new USGS research is showing that these cycles may be considerably different from common perceptions.
Most of the world’s beaches have regular cycles of erosion and recovery, but new USGS research is showing that these cycles may be considerably different from common perceptions.

Hybrid coral reef restoration: A cost-effective, nature-based solution to protect people and property (AD)
linkCoral reef restoration can protect hundreds of millions of dollars of coastal property and business activity annually from storm-driven flooding.
It can protect thousands of people, especially children, the elderly, minorities, and those below the poverty line. Thus, coral reef restoration is a mechanism to provide environmental equity.
Hybrid coral reef restoration: A cost-effective, nature-based solution to protect people and property (AD)
linkCoral reef restoration can protect hundreds of millions of dollars of coastal property and business activity annually from storm-driven flooding.
It can protect thousands of people, especially children, the elderly, minorities, and those below the poverty line. Thus, coral reef restoration is a mechanism to provide environmental equity.

(Spanish captions) Hybrid coral reef restoration: A cost-effective, nature-based solution to protect people and property
linkCoral reef restoration can protect hundreds of millions of dollars of coastal property and business activity annually from storm-driven flooding.
It can protect thousands of people, especially children, the elderly, minorities, and those below the poverty line. Thus, coral reef restoration is a mechanism to provide environmental equity.
(Spanish captions) Hybrid coral reef restoration: A cost-effective, nature-based solution to protect people and property
linkCoral reef restoration can protect hundreds of millions of dollars of coastal property and business activity annually from storm-driven flooding.
It can protect thousands of people, especially children, the elderly, minorities, and those below the poverty line. Thus, coral reef restoration is a mechanism to provide environmental equity.

Hybrid coral reef restoration: A cost-effective, nature-based solution to protect people and property
linkCoral reef restoration can protect hundreds of millions of dollars of coastal property and business activity annually from storm-driven flooding.
It can protect thousands of people, especially children, the elderly, minorities, and those below the poverty line. Thus, coral reef restoration is a mechanism to provide environmental equity.
Hybrid coral reef restoration: A cost-effective, nature-based solution to protect people and property
linkCoral reef restoration can protect hundreds of millions of dollars of coastal property and business activity annually from storm-driven flooding.
It can protect thousands of people, especially children, the elderly, minorities, and those below the poverty line. Thus, coral reef restoration is a mechanism to provide environmental equity.
This PlaneCam video was produced by developing animation tracklines in ArcGlobe, using imagery from PlaneCam flights.
This PlaneCam video was produced by developing animation tracklines in ArcGlobe, using imagery from PlaneCam flights.
Timelapsed photo data is sequenced at about 1 pixel-averaged frame per day, meaning that all of the images from a given day are combined, and the RGB values for a given x/y location on the image are the average of every RGB value for that location for that day.
Timelapsed photo data is sequenced at about 1 pixel-averaged frame per day, meaning that all of the images from a given day are combined, and the RGB values for a given x/y location on the image are the average of every RGB value for that location for that day.
This PlaneCam video was produced by developing animation tracklines in ArcGlobe, using imagery from PlaneCam flights.
This PlaneCam video was produced by developing animation tracklines in ArcGlobe, using imagery from PlaneCam flights.
Timelapsed photo data is sequenced at about 1 pixel-averaged frame per day, meaning that all of the images from a given day are combined, and the RGB values for a given x/y location on the image are the average of every RGB value for that location for that day.
Timelapsed photo data is sequenced at about 1 pixel-averaged frame per day, meaning that all of the images from a given day are combined, and the RGB values for a given x/y location on the image are the average of every RGB value for that location for that day.
Timelapsed photo data is sequenced at about 1 pixel-averaged frame per day, meaning that all of the images from a given day are combined, and the RGB values for a given x/y location on the image are the average of every RGB value for that location for that day.
Timelapsed photo data is sequenced at about 1 pixel-averaged frame per day, meaning that all of the images from a given day are combined, and the RGB values for a given x/y location on the image are the average of every RGB value for that location for that day.
Timelapsed photo data is sequenced at about 1 pixel-averaged frame per day, meaning that all of the images from a given day are combined, and the RGB values for a given x/y location on the image are the average of every RGB value for that location for that day.
Timelapsed photo data is sequenced at about 1 pixel-averaged frame per day, meaning that all of the images from a given day are combined, and the RGB values for a given x/y location on the image are the average of every RGB value for that location for that day.
Timelapsed photo data is sequenced at about 1 pixel-averaged frame per day, meaning that all of the images from a given day are combined, and the RGB values for a given x/y location on the image are the average of every RGB value for that location for that day.
Timelapsed photo data is sequenced at about 1 pixel-averaged frame per day, meaning that all of the images from a given day are combined, and the RGB values for a given x/y location on the image are the average of every RGB value for that location for that day.
USGS scientists collect core samples from estuaries, lakes, coasts, and marine environments to study a range of physical and chemical properties preserved in sediment or coral over time. They process and analyze these core samples at the Pacific Coastal and Marine Science Center’s Sediment Core Lab.
USGS scientists collect core samples from estuaries, lakes, coasts, and marine environments to study a range of physical and chemical properties preserved in sediment or coral over time. They process and analyze these core samples at the Pacific Coastal and Marine Science Center’s Sediment Core Lab.
USGS scientists collect core samples from estuaries, lakes, coasts, and marine environments to study a range of physical and chemical properties preserved in sediment or coral over time. They process and analyze these core samples at the Pacific Coastal and Marine Science Center’s Sediment Core Lab.
USGS scientists collect core samples from estuaries, lakes, coasts, and marine environments to study a range of physical and chemical properties preserved in sediment or coral over time. They process and analyze these core samples at the Pacific Coastal and Marine Science Center’s Sediment Core Lab.
Join USGS Research Geologist and lifelong surfer Jon Warrick at the Pacific Coastal and Marine Science Center Santa Cruz as he discusses how coastal and ocean geoscience contributes to a better understanding of how waves form and behave as they approach the shore—critical information with a broad range of applications, not least of which is surfing!
Join USGS Research Geologist and lifelong surfer Jon Warrick at the Pacific Coastal and Marine Science Center Santa Cruz as he discusses how coastal and ocean geoscience contributes to a better understanding of how waves form and behave as they approach the shore—critical information with a broad range of applications, not least of which is surfing!
Join USGS Research Geologist and lifelong surfer Jon Warrick at the Pacific Coastal and Marine Science Center Santa Cruz as he discusses how coastal and ocean geoscience contribute to a better understanding of how waves form and behave as they approach the shore—critical information with a broad range of applications, not least of which is surfing!
Join USGS Research Geologist and lifelong surfer Jon Warrick at the Pacific Coastal and Marine Science Center Santa Cruz as he discusses how coastal and ocean geoscience contribute to a better understanding of how waves form and behave as they approach the shore—critical information with a broad range of applications, not least of which is surfing!
The Coastal Science Navigator is intended to help users discover USGS Coastal Change Hazards information, products, and tools relevant to their scientific or decision-making needs.
The Coastal Science Navigator is intended to help users discover USGS Coastal Change Hazards information, products, and tools relevant to their scientific or decision-making needs.
From volcanologists to oceanographers, biologists to paleontologists, the U.S. Geological Survey employs thousands of scientists across the Earth sciences. Each has a unique role in supporting the bureau’s mission of providing “science that matters” to the American people.
From volcanologists to oceanographers, biologists to paleontologists, the U.S. Geological Survey employs thousands of scientists across the Earth sciences. Each has a unique role in supporting the bureau’s mission of providing “science that matters” to the American people.

Research Oceanographer Jessica Lacy investigates the influence of tides, waves, and water levels on wave-exposed tidal salt marshes, helping to understand how these important ecosystems will respond to sea level rise.
Research Oceanographer Jessica Lacy investigates the influence of tides, waves, and water levels on wave-exposed tidal salt marshes, helping to understand how these important ecosystems will respond to sea level rise.