Skip to main content
U.S. flag

An official website of the United States government

Sediments

Filter Total Items: 11

Natural Subsidence and Sea-Level Rise - Subsidence and Wetland Loss Related to Fluid Energy Production, Gulf Coast Basin

Geologic proxies may shed light on long-term environmental trends and stability of the Louisiana coastal marsh. The combined processes of accretion, sea-level rise and subsidence influence wetland elevation and determine marsh stability.
link

Natural Subsidence and Sea-Level Rise - Subsidence and Wetland Loss Related to Fluid Energy Production, Gulf Coast Basin

Geologic proxies may shed light on long-term environmental trends and stability of the Louisiana coastal marsh. The combined processes of accretion, sea-level rise and subsidence influence wetland elevation and determine marsh stability.
Learn More

Estuarine and MaRsh Geology Research Project

The goal of the Estuarine and MaRsh Geology (EMRG) Research Project is to study how and where short- and long-term marsh and estuarine coastal processes interact, how they influence coastal accretion or erosion, and how they pre-condition a marsh’s resiliency to storms, sea-level change, and human alterations along the northern Gulf of Mexico (Grand Bay and Point aux Chenes, Mississippi and St...
link

Estuarine and MaRsh Geology Research Project

The goal of the Estuarine and MaRsh Geology (EMRG) Research Project is to study how and where short- and long-term marsh and estuarine coastal processes interact, how they influence coastal accretion or erosion, and how they pre-condition a marsh’s resiliency to storms, sea-level change, and human alterations along the northern Gulf of Mexico (Grand Bay and Point aux Chenes, Mississippi and St...
Learn More

Coastal Sediment Availability and Flux (CSAF)

Sediments are the foundation of coastal systems, including barrier islands. Their behavior is driven by not only sediment availability, but also sediment exchanges between barrier island environments. We collect geophysical, remote sensing, and sediment data to estimate these parameters, which are integrated with models to improve prediction of coastal response to extreme storms and sea-level rise...
link

Coastal Sediment Availability and Flux (CSAF)

Sediments are the foundation of coastal systems, including barrier islands. Their behavior is driven by not only sediment availability, but also sediment exchanges between barrier island environments. We collect geophysical, remote sensing, and sediment data to estimate these parameters, which are integrated with models to improve prediction of coastal response to extreme storms and sea-level rise...
Learn More

Coastal System Change at Fire Island, New York

Fire Island is a 50-km long barrier island along the south shore of Long Island, New York. The island is comprised of seventeen year-round communities; federal, state, and county parks; and supports distinct ecosystems alongside areas of economic and cultural value. In addition to providing resources to its residents, the barrier island also protects the heavily-populated mainland from storm waves...
link

Coastal System Change at Fire Island, New York

Fire Island is a 50-km long barrier island along the south shore of Long Island, New York. The island is comprised of seventeen year-round communities; federal, state, and county parks; and supports distinct ecosystems alongside areas of economic and cultural value. In addition to providing resources to its residents, the barrier island also protects the heavily-populated mainland from storm waves...
Learn More

Geology and Sediment Availability - Coastal System Change at Fire Island, New York

Sediment supply is a critical control on barrier island vulnerability and resilience over a variety of time scales (e.g., storms to sea level rise). Past work at Fire Island and elsewhere has demonstrated a link between inner shelf sediment availability and barrier island evolution over geologic and historical time scales. However, there have been few opportunities to explore nearshore sediment...
link

Geology and Sediment Availability - Coastal System Change at Fire Island, New York

Sediment supply is a critical control on barrier island vulnerability and resilience over a variety of time scales (e.g., storms to sea level rise). Past work at Fire Island and elsewhere has demonstrated a link between inner shelf sediment availability and barrier island evolution over geologic and historical time scales. However, there have been few opportunities to explore nearshore sediment...
Learn More

Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES)

This project assesses the physical controls of sediment and material exchange between wetlands and estuarine environments along the northern Gulf of Mexico (Grand Bay Alabama/Mississippi and Vermilion Bay, Louisiana) and the Atlantic coast (Chincoteague Bay, Virginia/Maryland).
link

Sea-level and Storm Impacts on Estuarine Environments and Shorelines (SSIEES)

This project assesses the physical controls of sediment and material exchange between wetlands and estuarine environments along the northern Gulf of Mexico (Grand Bay Alabama/Mississippi and Vermilion Bay, Louisiana) and the Atlantic coast (Chincoteague Bay, Virginia/Maryland).
Learn More

Hurricane Sandy Response - Barrier Island and Estuarine Wetland Physical Change Assessment

This project integrated a wetland assessment with existing coastal-change hazard assessments for the adjacent dunes and beaches of Assateague Island, Maryland, to create a more comprehensive coastal vulnerability assessment.
link

Hurricane Sandy Response - Barrier Island and Estuarine Wetland Physical Change Assessment

This project integrated a wetland assessment with existing coastal-change hazard assessments for the adjacent dunes and beaches of Assateague Island, Maryland, to create a more comprehensive coastal vulnerability assessment.
Learn More

Paleoceanographic Proxy Calibration

A sediment trap time series in the northern Gulf of Mexico is used to better assess the control of environmental variables (e.g., temperature and salinity) on the flux of both microfossils and molecular fossils to the sediments. The information gained from sediment trap studies is used to develop better proxy-based estimates of past oceanographic conditions from analyses of microfossils and...
link

Paleoceanographic Proxy Calibration

A sediment trap time series in the northern Gulf of Mexico is used to better assess the control of environmental variables (e.g., temperature and salinity) on the flux of both microfossils and molecular fossils to the sediments. The information gained from sediment trap studies is used to develop better proxy-based estimates of past oceanographic conditions from analyses of microfossils and...
Learn More

Barrier Island Comprehensive Monitoring

Historical and newly acquired data were used to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment properties, environmental processes, and vegetation composition.
link

Barrier Island Comprehensive Monitoring

Historical and newly acquired data were used to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment properties, environmental processes, and vegetation composition.
Learn More

Science Support for the Mississippi Coastal Improvement Project

Since 2007, the USGS (with NPS and USACE) has been mapping the seafloor and substrate around the Mississippi barrier islands to characterize the near-surface stratigraphy and identify the influence it has on island evolution and fate.
link

Science Support for the Mississippi Coastal Improvement Project

Since 2007, the USGS (with NPS and USACE) has been mapping the seafloor and substrate around the Mississippi barrier islands to characterize the near-surface stratigraphy and identify the influence it has on island evolution and fate.
Learn More

Geologic and Morphologic Evolution of Coastal Margins

A combination of geophysics, sediment sampling, and chronology techniques are used to characterize the regional geomorphologic response of coastal systems to environmental changes.
link

Geologic and Morphologic Evolution of Coastal Margins

A combination of geophysics, sediment sampling, and chronology techniques are used to characterize the regional geomorphologic response of coastal systems to environmental changes.
Learn More