Climate Research and Development Program

Ecosystem Modelling

Climate R&D scientists examine ecosystem dynamics that provide important services but are susceptible to the combined impacts of anthropogenic and natural disturbances. Ecosystem modeling provides land managers with geospatial information, models, and management tools that address the vulnerability of ecosystems to changing environmental conditions.

Filter Total Items: 12
Date published: January 25, 2021
Status: Active

Arctic Biogeochemical Response to Permafrost Thaw (ABRUPT)

Warming and thawing of permafrost soils in the Arctic is expected to become widespread over the coming decades.  Permafrost thaw changes ecosystem structure and function, affects resource availability for wildlife and society, and decreases ground stability which affects human infrastructure. Since permafrost soils contain about half of the global soil carbon (C) pool, the magnitude of C...

Date published: December 2, 2020
Status: Active

Understanding long-term drivers of vegetation change and stability in the Southern Rocky Mountains with paleoecological data and ecological models

Drought and fire are powerful disturbance agents that can trigger rapid and lasting changes in the forests of western North America. Over the last decade, increases in fire size and severity coincided with warming, drought, and earlier snowmelt, factors that projected climatic changes are likely to exacerbate. However, recent observations are brief relative to the lifespans of trees and...

Date published: February 26, 2020
Status: Active

Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts

Estuaries and their surrounding wetlands are coastal transition zones where freshwater rivers meet tidal seawater.  As sea levels rise, tidal forces move saltier water farther upstream, extending into freshwater wetland areas. Human changes to the surrounding landscape may amplify the effects of this tidal extension, impacting the resiliency and function of the upper estuarine wetlands. One...

Contacts: Ken Krauss, Ph.D., Gregory Noe, Camille LaFosse Stagg, Ph.D., Hongqing Wang, Ph.D., Eric J Ward, Ph.D., Jamie A. Duberstein, William H. Conner, Zhaohua Dai, Thomas L. O'Halloran
Date published: July 1, 2019
Status: Active

Future Scenarios of Land Use and Land Cover Change for Integrated Resources Assessment

This research project aims to develop a portfolio approach to development of land change scenarios for the United States based on empirical data and global integrated assessment modeling.This research will continue the development and capabilities of the Land Use and Carbon Scenario Simulator (LUCAS), which has been developed by USGS scientists for the purposes of projecting land change and...

Date published: April 17, 2019
Status: Active

Water Quality Across Regional Stream Networks: The Influence of Land Cover and Land Use, Climate, and Biogeochemical Processing on Spatiotemporal Variance

Land cover and land use (LC/LU), climate, and biogeochemical processing are significant drivers of water quality in streams and rivers over broad scales of space and time. As LC/LU and climate continue to change we can expect changes in water quality. This project seeks to understand the drivers of spatial and temporal variability in water quality across scales using new and existing data to...

Date published: April 13, 2019
Status: Active

Mechanisms, models, and management of invasive species and soil biogeochemical process in prairie pothole wetlands

The ecological foundation of thousands of acres of wetland habitat is being impacted by changes in land cover, land use, climate, and invasive species.  This project utilizes USGS remotely-sensed products, along with experimental and observational field data to develop spatially-explicit, landscape-scale models of invasive cattails and soil biogeochemical processes.  These models will assist...

Date published: April 13, 2019
Status: Active

Forest health and drought response

Forests provide society with economically important and often irreplaceable goods and services, such as wood products, carbon sequestration, clean water, biodiversity, and recreational opportunities.  Yet hotter droughts (droughts in which unusually high temperatures exacerbate the effects of low precipitation) are projected to increase in frequency and intensity in coming decades, potentially...

Date published: December 12, 2018
Status: Active

Application and Refinement of a Systems Model for Prairie Pothole Wetlands

The Prairie Pothole Region (PPR) of North America is one of the most important breeding areas for continental waterfowl populations, a Department of Interior (DOI) trust resource. Land use and climate both influence the functioning of the region’s wetland ecosystems, with effects not just on the waterfowl that depend on these wetlands, but also on the services they provide to society, such as...

Contacts: David Mushet
Date published: November 28, 2018
Status: Active

Spatial Modeling of Land Use, Climate, and Environmental Consequences

USGS scientists have a long tradition of providing high-quality, consistent, and relevant land-cover data for the United States, using our archive of current and historical remote sensing data.  Scientists at USGS EROS are using their experience in mapping land cover and their knowledge of land-cover change processes to temporally extend these databases beyond the dates of available remote...

Contacts: Terry Sohl
Date published: November 12, 2018
Status: Active

Geological Investigations of the Neogene

More than a third of the United States population lives in counties directly on the shoreline, making them vulnerable to hazards associated with changing sea level and storm surges associated with hurricanes and severe storms. The geologic record contains many examples of past intervals of warm climate and high sea level. "Geological Investigation of the Neogene" is examining proxy records of...

Date published: July 14, 2017
Status: Active

Exploring Future Flora, Environments, and Climates Through Simulations (EFFECTS)

Climate changes can significantly affect species and ecosystems. Historical and paleoenvironmental data record species and ecosystem responses to past climate changes, but these records become sparse as one goes further back in time. Model simulations can be used fill the spatial and temporal gaps in observed records to improve our understanding of the potential magnitude, rate, and spatial...

Date published: July 14, 2017
Status: Completed

Terrestrial Rates and Amplitudes of Changes in Ecoclimate Systems (TRACES)

Vegetation changes caused by climatic variations and/or land use may have large impacts on forests, agriculture, rangelands, natural ecosystems, and endangered species. Climate modeling studies indicate that vegetation cover, in turn, has a strong influence on regional climates, and this must be better understood before models can estimate future environmental conditions. To address these...

Contacts: Bob Thompson