Listed here are the most recent publications, reports and articles by the Climate R&D program.
To access listings of older publications or perform more advanced searches please click the button below.
Filter Total Items: 913
An aridity threshold model of fire sizes and annual area burned in extensively forested ecoregions of the western USA
Wildfire occurrence varies among regions and through time due to the long-term impacts of climate on fuel structure and short-term impacts on fuel flammability. Identifying the climatic conditions that trigger extensive fire years at regional scales can enable development of area burned models that are both spatially and temporally robust, which is crucial for understanding the impacts of past and
Assessing the seasonal evolution of snow depth spatial variability and scaling in complex mountain terrain
Dynamic natural processes govern snow distribution in mountainous environments throughout the world. Interactions between these different processes create spatially variable patterns of snow depth across a landscape. Variations in accumulation and redistribution occur at a variety of spatial scales, which are well established for moderate mountain terrain. However, spatial patterns of snow depth v
Marshes and mangroves as nature-based coastal storm buffers
Tidal marshes and mangroves are increasingly valued for nature-based mitigation of coastal storm impacts, such as flooding and shoreline erosion hazards, which are growing due to global change. As this review highlights, however, hazard mitigation by tidal wetlands is limited to certain conditions, and not all hazards are equally reduced. Tidal wetlands are effective in attenuating short-period st
The influence of soil development on the depth distribution and structure of soil microbial communities.
Although it has been shown that the interaction of climate and time shape the dynamics of soil organic matter (SOM) storage and preservation in soil, the role of soil microbial communities in this dynamic remains unclear. Microbial communities are present throughout soil profiles and likely play critical roles in SOM and nutrient cycling, however the influence of other factors such as soil develop
Biostratigraphically significant palynofloras from the Paleocene–Eocene boundary of the USA
Pollen and spores were recovered from the Paleocene Fort Union Formation and Paleocene–Eocene Willwood Formation of the Bighorn Basin (BHB), northwestern Wyoming, USA. In many local stratigraphic sections in the BHB, the base of the Eocene has been identified by the characteristic negative carbon isotope excursion (CIE) that marks the beginning of the Paleocene–Eocene Thermal Maximum (PETM). The p
Astrochronology of the Paleocene-Eocene Thermal Maximum on the Atlantic Coastal Plain
The chronology of the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) remains disputed, hampering complete understanding of the possible trigger mechanisms of this event. Here we present an astrochronology for the PETM carbon isotope excursion from Howards Tract, Maryland a paleoshelf environment, on the mid-Atlantic Coastal Plain. Statistical evaluation of variations in calcium content and magnet
Assessing reproducibility in sedimentary macroscopic charcoal count data
Current understanding of global late Quaternary fire history is largely drawn from sedimentary charcoal data. Since publication, CharAnalysis increasingly has been relied upon as a robust method for analyzing these data. However, several underlying assumptions of the algorithm have not been tested. This study uses replicated charcoal count data to examine the assumption of Poisson distribution and
Floodplain ecology: A novel wetland community of the Amazon
An expedition to the upper estuarine reaches of the Amazon River reveals intriguing overlap of tropical mangrove wetlands with riverine floodplain forests. This newly discovered type of forested wetland assemblage may provide a uniquely process-rich carbon hotspot.
Quality assurance report for Loch Vale Watershed, 2010–19
The Loch Vale Watershed Research and Monitoring Program collects long-term datasets of ecological and biogeochemical parameters in Rocky Mountain National Park to support both (1) management of this protected area and (2) research into watershed-scale ecosystem processes as those processes respond to atmospheric deposition and climate variability. The program collects data on precipitation depth a
Simulation of heat flow in a synthetic watershed: Lags and dampening across multiple pathways under a climate-forcing scenario
Although there is widespread agreement that future climates tend toward warming, the response of aquatic ecosystems to that warming is not well understood. This work, a continuation of companion research, explores the role of distinct watershed pathways in lagging and dampening climate-change signals. It subjects a synthetic flow and transport model to a 30-year warming signal based on climate pro
Direct and indirect influences of macrophyte cover on abundance and growth of juvenile Atlantic salmon
1. The relationships between macrophytes and the physical and biological characteristics of the environments that aquatic organisms inhabit are complex. Previous studies have shown that the macrophytes, Ranunculus (subgenus Batrachium), which are dominant in lowland chalk streams and widespread across Europe, can enhance juvenile Atlantic salmon abundance and growth to a greater degree than other
Using a vegetation index to assess wetland condition in the Prairie Pothole Region of North America
Wetlands deliver a suite of ecosystem services to society. Anthropogenic activities, such as wetland drainage, have resulted in considerable wetland loss and degradation, diminishing the intrinsic value of wetland ecosystems worldwide. Protecting remaining wetlands and restoring degraded wetlands are common management practices to preserve and reclaim wetland benefits to society. Accordingly, meth