Climate Research and Development Program

Remote Sensing

Sensors mounted on satellites, planes, drones, and ground-based platforms monitor land cover regionally and globally. The Climate R&D Program uses a range of remotely sensed data (including satellite imagery, historical photographs, and land-surface feature maps) to document landscape change and drivers, improve projections of future change, and identify impacts on infrastructure and society.

Filter Total Items: 10
Date published: January 25, 2021
Status: Active

Arctic Biogeochemical Response to Permafrost Thaw (ABRUPT)

Warming and thawing of permafrost soils in the Arctic is expected to become widespread over the coming decades.  Permafrost thaw changes ecosystem structure and function, affects resource availability for wildlife and society, and decreases ground stability which affects human infrastructure. Since permafrost soils contain about half of the global soil carbon (C) pool, the magnitude of C...

Date published: October 29, 2020
Status: Active

USGS Snow and Avalanche Project

Snow avalanches are a widespread natural hazard to humans and infrastructure as well as an important landscape disturbance affecting mountain ecosystems. Forecasting avalanche frequency is challenging on various spatial and temporal scales, and this project aims to fill a gap in snow science by focusing on reconstructing avalanche history on the continental mountain range scale - throughout...

Date published: March 25, 2020
Status: Active

Past Perspectives of Water in the West

In the intermountain west, seasonal precipitation extremes, combined with population growth, are creating new challenges for the management of water resources, ecosystems, and geologic hazards. This research contributes a comprehensive long-term context for a deeper understanding of past hydrologic variability, including the magnitude and frequency of drought and flood extremes and ecosystem...

Date published: July 1, 2019
Status: Active

Future Scenarios of Land Use and Land Cover Change for Integrated Resources Assessment

This research project aims to develop a portfolio approach to development of land change scenarios for the United States based on empirical data and global integrated assessment modeling.This research will continue the development and capabilities of the Land Use and Carbon Scenario Simulator (LUCAS), which has been developed by USGS scientists for the purposes of projecting land change and...

Date published: April 17, 2019
Status: Active

Mountains to sea – fluvial transport of carbon and nutrients and effects on ecosystems and people

Stream transport (lateral transfer) of carbon remains a poorly understood flux within the global carbon budget.  This research addresses the need to refine our knowledge of both provenance and transformations of Dissolved Organic Matter (DOM) as it moves from mountains to sea.  Interpreting shifts in carbon quality with increasing stream order, and how these patterns change with variation in...

Date published: April 15, 2019
Status: Active

Effects of disturbance and drought on the forests and hydrology of the Southern Rocky Mountains

Climate-related forest disturbances, particularly drought-induced tree mortality and large, high-severity fires from increasingly warm and dry conditions, are altering forest ecosystems and the ecosystem services society depends on (e.g., water supplies).  Our research combines long-term place-based ecological data, diverse methods (e.g., paleo, remote-sensing), and networking approaches to...

Date published: April 13, 2019
Status: Active

Mechanisms, models, and management of invasive species and soil biogeochemical process in prairie pothole wetlands

The ecological foundation of thousands of acres of wetland habitat is being impacted by changes in land cover, land use, climate, and invasive species.  This project utilizes USGS remotely-sensed products, along with experimental and observational field data to develop spatially-explicit, landscape-scale models of invasive cattails and soil biogeochemical processes.  These models will assist...

Date published: November 28, 2018
Status: Active

Spatial Modeling of Land Use, Climate, and Environmental Consequences

USGS scientists have a long tradition of providing high-quality, consistent, and relevant land-cover data for the United States, using our archive of current and historical remote sensing data.  Scientists at USGS EROS are using their experience in mapping land cover and their knowledge of land-cover change processes to temporally extend these databases beyond the dates of available remote...

Contacts: Terry Sohl
Date published: November 6, 2018
Status: Active

USGS Benchmark Glacier Project

Scientists with the USGS Benchmark Glacier Project study the process and impacts of glacier change, including sea-level rise, water resources, environmental hazards and ecosystem links. At the core of this research are mass balance measurements at five glaciers in the United States. Since the 1960s, these glaciers have been studied using direct observations of glaciers and meteorology. The...

Date published: May 30, 2017
Status: Active

Patterns in the Landscape – Analyses of Cause and Effect

For two decades, USGS scientists with the Land Cover Trends team have used satellite data to study landscape change across the United States. Increasingly, research is focused on understanding why change occurs. Insights into the underlying causes of shifts in land use and land cover (LULC) will allow managers and stakeholders to make more informed decisions about how to respond to future...