Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 7168

Fracture-mesh faulting in the swarm-like 2020 Maacama sequence revealed by high-precision earthquake detection, location, and focal mechanisms

In August of 2020, an earthquake sequence initiated within the Maacama fault zone in northern California, raising questions about its relationship with the larger-scale fault. To investigate the faulting geometry and its implications for physical processes driving seismicity, we applied an integrated, multi-faceted seismic analysis including waveform-correlation-based event detection, relative rel
Authors
David R. Shelly, Robert John Skoumal, Jeanne L. Hardebeck

Using seismic noise correlation to determine the shallow velocity structure of the Seattle basin, Washington

Cross-correlation waveforms of seismic noise in the Seattle basin, Washington, were analyzed to determine the group velocities of surface waves and constrain the shear-wave velocity (VS) for depths less than about 2 kilometers (km). Twenty broadband seismometers were deployed for about 3 weeks in three dense arrays separated by about 5 km, with minimum intra-array station spacing of about 0.5 km.
Authors
Arthur Frankel, Paul Bodin

Optimizing satellite resources for the global assessment and mitigation of volcanic hazards—Suggestions from the USGS Powell Center Volcano Remote Sensing Working Group

A significant number of the world’s approximately 1,400 subaerial volcanoes with Holocene eruptions are unmonitored by ground-based sensors yet constitute a potential hazard to nearby residents and infrastructure, as well as air travel and global commerce. Data from an international constellation of more than 60 current satellite instruments provide a cost-effective means of tracking activity and
Authors
M. E. Pritchard, M. Poland, K. Reath, B. Andrews, M. Bagnardi, J. Biggs, S. Carn, D. Coppola, S.K. Ebmeier, M.A. Furtney, T. Girona, J. Griswold, T. Lopez, P. Lundgren, S. Ogburn, M. Pavolonis, E. Rumpf, G. Vaughan, C. Wauthier, R. Wessels, R. Wright, K.R. Anderson, M.G. Bato, A. Roman

Seismic multi-hazard and impact estimation via causal inference from satellite imagery

Rapid post-earthquake reconnaissance is important for emergency responses and rehabilitation by providing accurate and timely information about secondary hazards and impacts, including landslide, liquefaction, and building damage. Despite the extensive collection of geospatial data and satellite images, existing physics-based and data-driven methods suffer from low estimation performance due to th
Authors
Susu Xu, Joshua Dimasaka, David J. Wald, Hae Young Noh

Spatial and temporal distribution of sinuous ridges in southeastern Terra Sabaea and the northern region of Hellas Planitia, Mars

Sinuous ridges are an important yet understudied component of Mars' hydrologic history. We have produced a map of sinuous ridges, valleys and channels, and tectonic ridges across southeastern Terra Sabaea and into northern Hellas Planitia (10°-45° S, 35°-80° E) using a CTX mosaic. Although we mapped different types of ridges and negative relief features, the focus of this paper are the sinuous rid
Authors
Amber Gullikson, Ryan Anderson, Rebecca M.E. Williams

A large new crater exposes the limits of water ice on Mars

Water ice in the Martian mid-latitudes has advanced and retreated in response to variations in the planet's orbit, obliquity, and climate. A 150 m-diameter new impact crater near 35°N provides the lowest-latitude impact exposure of subsurface ice on Mars. This is the largest known ice-exposing crater and provides key constraints on Martian climate history. This crater indicates a regional, relativ
Authors
Colin M. Dundas, Michael T. Mellon, Liliya V Posiolova, Katarina Miljkovic, Gareth S Collins, Livio L. Tornabene, Vidhya Ganesh Rangarajan, Matthew P. Golombek, Nicholas H. Warner, Ingrid J. Daubar, Shane Byrne, Alfred S. McEwen, Kimberly D. Seelos, Donna Viola, Ali M Bramson, Gunnar Speth

Estimates of k0 and effects on ground motions in the San Francisco Bay area

Ground‐motion studies are a key component of seismic hazard analyses and often rely on information of the source, path, and site. Extensive research has been done on each of these parameters; however, site‐specific studies are of particular interest to seismic hazard studies, especially in the field of earthquake engineering, as near‐site conditions can have a significant impact on the resulting g
Authors
Tara Nye, Valerie J. Sahakian, Elias King, Annemarie S. Baltay, Alexis Klimasewski

Earth’s upper crust seismically excited by infrasound from the 2022 Hunga Tonga–Hunga Ha’apai eruption, Tonga

Records of pressure variations on seismographs were historically considered unwanted noise; however, increased deployments of collocated seismic and acoustic instrumentation have driven recent efforts to use this effect induced by both wind and anthropogenic explosions to invert for near‐surface Earth structure. These studies have been limited to shallow structure because the pressure signals have
Authors
Robert E. Anthony, Adam T. Ringler, Toshiro Tanimoto, Robin Matoza, Silvio De Angelis, David C. Wilson

Defining the Hoek-Brown constant mi for volcanic lithologies

The empirical Hoek-Brown failure criterion is a well-known and commonly used failure criterion for both intact rocks and rock masses, especially in geological engineering. The intact criterion is calculated using experimental triaxial compression test results on intact samples while the rock mass criterion modifies the intact strength using quantified measures of the rock mass quality. The Hoek-Br
Authors
Marlène C. Villeneuve, Michael J. Heap, Lauren N. Schaefer

Giant planet observations in NASA's Planetary Data System

While there have been far fewer missions to the outer Solar System than to the inner Solar System, spacecraft destined for the giant planets have conducted a wide range of fundamental investigations, returning data that continues to reshape our understanding of these complex systems, sometimes decades after the data were acquired. These data are preserved and accessible from national and internati
Authors
Nancy J. Chanover, James M. Bauer, John Joe Jeremiah Blalock, Mitchell K. Gordon, Lyle F. Huber, Mia J. T. Mace, Lynn D. V. Neakrase, Matthew S. Tiscareno, Raymond J. Walker

COSMOS Ground-Motion Simulation Working Group workshops #1 and #2

These 2 workshops were held in response to interest generated from sessions on the use of simulated earthquake ground motions at the 2020 and 2021 Consortium of Organizations for Strong Motion Observation Systems (COSMOS) Technical Sessions. The discussions at the Technical Sessions highlighted desires to promote the use of simulated earthquake ground motions for engineering applications and the n
Authors
Brad T. Aagaard, Aysegul Askan, Sanaz Rezaeian, Sean Kamran Ahdi, Alan Yong

Using a grid-search approach to validate the Graves-Pitarka broadband simulation method

This work assesses the ability of the Graves–Pitarka simulation approach to reproduce observed ground motions for 12 California and Baja California earthquakes. A total of 240 realizations are computed for each earthquake and compared with recorded strong motions from near-fault sites. In addition to spatial variability in slip, each realization samples from discrete combinations of average ruptur
Authors
Robert Graves