Skip to main content
U.S. flag

An official website of the United States government

Publications

Filter Total Items: 7169

Applications of nonergodic site response models to ShakeAlert case studies in the Los Angeles area

In this study, we explore whether the Parker and Baltay (2022) site response models for the Los Angeles (LA) basin region can improve ground‐motion forecasts in the U.S. Geological Survey ShakeAlert earthquake early warning system (hereafter ShakeAlert). We implement the peak ground acceleration and peak ground velocity site response models of Parker and Baltay (2022) in ShakeAlert via the earthqu
Authors
Rongrong Lin, Grace Alexandra Parker, Jeffrey McGuire, Annemarie S. Baltay

A review of common natural disasters as analogs for asteroid impact effects and cascading hazards

Modern civilization has no collective experience with possible wide-ranging effects from a medium-sized asteroid impactor. Currently, modeling efforts that predict initial effects from a meteor impact or airburst provide needed information for initial preparation and evacuation plans, but longer-term cascading hazards are not typically considered. However, more common natural disasters, such as vo
Authors
Timothy N. Titus, D. G. Robertson, Joel B. Sankey, Larry G. Mastin, Francis K. Rengers

Regolith of the crater floor units, Jezero crater, Mars: Textures, composition and implications for provenance

A multi-instrument study of the regolith of Jezero crater floor units by the Perseverance rover has identified three types of regolith: fine-grained, coarse-grained, and mixed-type. Mastcam-Z, WATSON, and SuperCam RMI were used to characterize regolith texture, particle size, and roundedness where possible. Mastcam-Z multispectral and SuperCam LIBS data were used to constrain the composition of th
Authors
Alicia Vaughan, Michelle E. Minitti, Emily L. Cardarelli, Jeffrey R. Johnson, Linda C. Kah, Paolo Pilleri, Mellisa S. Rice, Mark Sephton, Briony H. N. Horgan, Roger C. Wiens, R. Aileen Yingst, Maria-Paz Zorzano Mier, Ryan Anderson, James F. III Bell, Adrian J. Brown, Edward A. Cloutis, Agnes Cousin, Kenneth E. Herkenhoff, Elisabeth M. Housrath, Alexander G. Hayes, Kjartan M. Kinch, Marco Merusi, Chase C. Million, Robert Sullivan, Sandra M. Siljestrom, Michael St. Clair

Revising supraglacial rock avalanche magnitudes and frequencies in Glacier Bay National Park, Alaska

The frequency of large supraglacial landslides (rock avalanches) occurring in glacial environments is thought to be increasing due to feedbacks with climate warming and permafrost degradation. However, it is difficult to (i) test this; (ii) establish cause–effect relationships; and (iii) determine associated lag-times, due to both temporal and spatial biases in detection rates. Here we applied the
Authors
William Smith, Stuart A. Dunning, Neil Ross, Jon Telling, Erin K. Bessette-Kirton, Dan H. Shugar, Jeffrey A. Coe, M. Geertsema

Using corrected and imputed polarity measurements to improve focal mechanisms in a regional earthquake catalog near the Mt. Lewis Fault Zone, California

We utilized relative polarity measurements and machine learning techniques to better resolve focal mechanisms and stress orientations considering a catalog of ∼29,000 relocated earthquakes that occurred during 1984–2021 in the southeastern San Francisco Bay Area. Earthquake focal mechanisms are commonly produced using P wave first motion polarities, which traditionally requires events to be well-r
Authors
Robert Skoumal, Jeanne L. Hardebeck, David R. Shelly

Investigations of ambient noise velocity variations in a region of induced seismicity near Greeley, Colorado

Wastewater injection has induced earthquakes in Northeastern Colorado since 2014. We apply ambient noise correlation techniques to determine temporal changes in seismic velocities in the region. We find no clear correlation between seismic velocity fluctuations and either injection volumes or seismicity patterns. We do observe apparent annual variations in velocity that may be associated with hydr
Authors
Thomas Clifford, Anne Sheehan, Morgan P. Moschetti

Damage amplification during repetitive seismic waves in mechanically loaded rocks

Cycles of stress build-up and release are inherent to tectonically active planets. Such stress oscillations impart strain and damage, prompting mechanically loaded rocks and materials to fail. Here, we investigate, under uniaxial conditions, damage accumulation and weakening caused by time-dependent creep (at 60, 65, and 70% of the rocks’ expected failure stress) and repeating stress oscillations
Authors
Anthony Lamur, Jackie E. Kendrick, Lauren N. Schaefer, Yan Lavallée, Ben M. Kennedy

Simulating debris flow and levee formation in the 2D shallow flow model D-Claw: Channelized and unconfined flow

Debris flow runout poses a hazard to life and infrastructure. The expansion of human population into mountainous areas and onto alluvial fans increases the need to predict and mitigate debris flow runout hazards. Debris flows on unconfined alluvial fans can exhibit spontaneous self-channelization through levee formation that reduces lateral spreading and extends runout distances compared to unchan
Authors
Ryan P. Jones, Francis K. Rengers, Katherine R. Barnhart, David L. George, Dennis M. Staley, Jason W. Kean

On the scale-dependence of fault surface roughness

Defining roughness as the ratio of height to length, the standard approach to characterize amplitudes of single fault, joint and fracture surfaces is to measure average height as a function of profile length. Empirically, this roughness depends strongly on scale. The ratio is approximately 0.01 at a few mm but 10× smaller at a few tens of meters. Surfaces are rougher at small scales. However, thes
Authors
Nicholas M. Beeler

Solid Earth–atmosphere interaction forces during the 15 January 2022 Tonga eruption

Rapid venting of volcanic material during the 15 January 2022 Tonga eruption generated impulsive downward reaction forces on the Earth of ~2.0 × 1013 N that radiated seismic waves observed throughout the planet, with ~25 s source bursts persisting for ~4.5 hours. The force time history is determined by analysis of teleseismic P waves and Rayleigh waves with periods approximately <50 s, providing i
Authors
Ricardo Garza-Giron, Thorne Lay, Fred Pollitz, Hiroo Kanamori, Luis Rivera

Comparison of ventifact orientations and recent wind direction indicators on the floor of Jezero crater, Mars

Wind-abraded rocks and aeolian bedforms have been observed at the Mars 2020 Perseverance landing site, providing evidence for recent and older wind directions. This study reports orientations of aeolian features measured in Perseverance images to infer formative wind directions. It compares these measurements with orbital observations, climate model predictions, and wind data acquired by the Mars
Authors
Kenneth E. Herkenhoff, Rob Sullivan, Claire E Newman, Gerhard Paar, Mariah Baker, Daniel Viudez-Moreiras, James W. Ashley, Andreas Bechtold, Jorge I Nunez

Ground motion selection for nonlinear response history analyses of concrete dams

Evaluating the seismic performance of a 3D concrete dam using nonlinear response history analysis (NLRHA) requires three orthogonal components of ground acceleration histories, or ground motions (GMs) for brevity. Although much progress has been made for the topic of ground motion selection and modification (GMSM) in the context of multistory buildings, NLRHA of dams requires at least two addition
Authors
N. Simon Kwong