Covering approximately 100,000 square miles of the southeastern United States, the Floridan aquifer system (FAS) is one of the most productive aquifers in the world. The FAS is the primary source of drinking water for almost 10 million people, with nearly 50 percent of all water withdrawals being used for industrial purposes and agricultural irrigation.
The Floridan aquifer system (FAS) is a principal aquifer of the United States and is one of the most productive aquifers in the world. It covers approximately 100,000 square miles of the southeastern United States including all of Florida and parts of Georgia, Alabama, Mississippi, and South Carolina; however, the FAS in Mississippi is not used due to its high salinity and depth. Topography within the study area is relatively flat; altitudes range from sea level along the Atlantic Ocean and Gulf of Mexico coastlines to approximately 500 feet in central Georgia. Water-supply wells were first drilled in the late 1880s and currently the FAS is the primary source of drinking water for almost 10 million people. Water from the FAS is also used for industrial purposes and agricultural irrigation which accounts for nearly 50 percent of all withdrawals from the FAS.
The FAS consists of a thick sequence of Tertiary carbonate rocks that generally thickens seaward from the northern boundary of the system and is over 3,000 ft thick in south Florida. The top of the FAS is confined by late and middle Miocene series rocks of the upper confining unit (where present) and the bottom is confined by early Paleocene series rocks. From top to bottom, the major hydrogeologic units of the FAS are the Upper Floridan aquifer (UFA), middle confining and composite units, and Lower Floridan aquifer (LFA).
The Floridan aquifer system behaves as one aquifer over much of its extent, though rocks of relatively lower permeability create hydrologic separation between the UFA and LFA sub-regionally. The majority of freshwater is contained in the Upper Floridan aquifer and is used for water supply. In south Florida, the Upper Floridan aquifer is brackish and used for purposes of reverse osmosis source water, blending with shallower fresh Biscayne aquifer groundwater, and aquifer storage and recovery. The Lower Floridan aquifer contains fresh to brackish water in northeastern Florida and Georgia, while in south Florida it is saline and used to dispose of effluent from wastewater treatment processes.
In the northern part of the study area the early Paleocene rocks underlying the FAS comprise part of the Southeastern Coastal Plain aquifer system (SECPAS). Vertical exchange of freshwater between the FAS and SECPAS likely is small, but in updip areas lower units of the FAS are hydraulically connected to clastic-equivalent units composing the upper part of the SECPAS and the degree of water exchange is a matter of debate. These clastic-equivalent units are included in the FAS framework by Williams and Kuniansky (2015) along with an updated extent of the most productive part of the system representing the predominantly carbonate facies (similar to the original extent of Miller, 1986).
Below are other science projects associated with karst aquifers.
Karst Aquifers
Karst Aquifers: Arbuckle-Simpson Aquifer
Karst Aquifers: Basin and Range and Bear River Range Carbonate Aquifers
Karst Aquifers: Colorado Plateau Karst
Karst Aquifers: Edwards Balcones Fault Zone Aquifer
Karst Aquifers: Edwards-Trinity Plateau Aquifer
Karst Aquifers: Upper Floridan and Biscayne Aquifers
Karst Aquifers: Madison Aquifer
Karst Aquifers: Midwest Paleozoic Carbonate Aquifers
Karst Aquifers: New England Karst Aquifers
Karst Aquifers: Ozark Plateau Karst Aquifers
Karst Aquifers: Roswell Basin Aquifer
Karst Aquifers: Pacific Northwest Pseudokarst Aquifers
Below are publications associated with this karst aquifer.
Multiple technologies applied to characterization of the porosity and permeability of the Biscayne aquifer, Florida
Hydrologic Conditions that Influence Streamflow Losses in a Karst Region of the Upper Peace River, Polk County, Florida
Hydrology, Water Quality, and Aquatic Communities of Selected Springs in the St. Johns River Water Management District, Florida
Prominence of ichnologically influenced macroporosity in the karst Biscayne aquifer: Stratiform "super-K" zones
NMR imaging of fluid exchange between macropores and matrix in eogenetic karst
Synthesis of the Hydrogeologic Framework of the Floridan Aquifer System and Delineation of a Major Avon Park Permeable Zone in Central and Southern Florida
Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 3. Use of microspheres to estimate the transport potential of Cryptosporidium parvum oocysts
Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 1. Revised conceptualization of groundwater flow
Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 2. Chemical retention from diffusion and slow advection
Hydrology of Polk County, Florida
A cyclostratigraphic and borehole-geophysical approach to development of a three-dimensional conceptual hydrogeologic model of the karstic Biscayne aquifer, southeastern Florida
Application of carbonate cyclostratigraphy and borehole geophysics to delineate porosity and preferential flow in the karst limestone of the Biscayne aquifer, SE Florida
- Overview
Covering approximately 100,000 square miles of the southeastern United States, the Floridan aquifer system (FAS) is one of the most productive aquifers in the world. The FAS is the primary source of drinking water for almost 10 million people, with nearly 50 percent of all water withdrawals being used for industrial purposes and agricultural irrigation.
The Floridan aquifer system (FAS) is a principal aquifer of the United States and is one of the most productive aquifers in the world. It covers approximately 100,000 square miles of the southeastern United States including all of Florida and parts of Georgia, Alabama, Mississippi, and South Carolina; however, the FAS in Mississippi is not used due to its high salinity and depth. Topography within the study area is relatively flat; altitudes range from sea level along the Atlantic Ocean and Gulf of Mexico coastlines to approximately 500 feet in central Georgia. Water-supply wells were first drilled in the late 1880s and currently the FAS is the primary source of drinking water for almost 10 million people. Water from the FAS is also used for industrial purposes and agricultural irrigation which accounts for nearly 50 percent of all withdrawals from the FAS.
The FAS consists of a thick sequence of Tertiary carbonate rocks that generally thickens seaward from the northern boundary of the system and is over 3,000 ft thick in south Florida. The top of the FAS is confined by late and middle Miocene series rocks of the upper confining unit (where present) and the bottom is confined by early Paleocene series rocks. From top to bottom, the major hydrogeologic units of the FAS are the Upper Floridan aquifer (UFA), middle confining and composite units, and Lower Floridan aquifer (LFA).
Generalized block diagram showing the hydrogeologic relation between the Floridan aquifer system and the Southeastern Coastal Plain aquifer system in east-central Georgia. The Floridan aquifer system behaves as one aquifer over much of its extent, though rocks of relatively lower permeability create hydrologic separation between the UFA and LFA sub-regionally. The majority of freshwater is contained in the Upper Floridan aquifer and is used for water supply. In south Florida, the Upper Floridan aquifer is brackish and used for purposes of reverse osmosis source water, blending with shallower fresh Biscayne aquifer groundwater, and aquifer storage and recovery. The Lower Floridan aquifer contains fresh to brackish water in northeastern Florida and Georgia, while in south Florida it is saline and used to dispose of effluent from wastewater treatment processes.
In the northern part of the study area the early Paleocene rocks underlying the FAS comprise part of the Southeastern Coastal Plain aquifer system (SECPAS). Vertical exchange of freshwater between the FAS and SECPAS likely is small, but in updip areas lower units of the FAS are hydraulically connected to clastic-equivalent units composing the upper part of the SECPAS and the degree of water exchange is a matter of debate. These clastic-equivalent units are included in the FAS framework by Williams and Kuniansky (2015) along with an updated extent of the most productive part of the system representing the predominantly carbonate facies (similar to the original extent of Miller, 1986).
- Science
Below are other science projects associated with karst aquifers.
Karst Aquifers
Karst terrain is created from the dissolution of soluble rocks, principally limestone and dolomite. Karst areas are characterized by distinctive landforms (like springs, caves, sinkholes) and a unique hydrogeology that results in aquifers that are highly productive but extremely vulnerable to contamination.Filter Total Items: 13Karst Aquifers: Arbuckle-Simpson Aquifer
The Arbuckle-Simpson aquifer, which underlies more than 500 square miles in south central Oklahoma, is the principal water source for approximately 39,000 people in several cities in the region. The U.S. Environmental Protection Agency has designated the aquifer's eastern portion as a Sole Source Aquifer, a mechanism to protect drinking water supplies in areas with limited water supply.Karst Aquifers: Basin and Range and Bear River Range Carbonate Aquifers
In the Basin and Range, bedrock is present in the uplifted blocks of the mountain ranges and beneath fill in the valleys. While some of this bedrock is relatively impermeable, fracturing may enable groundwater to circulate through the rock, enlarging and increasing the size and number of pathways for water movement. This can ultimately produce a permeable water-yielding unit.Karst Aquifers: Colorado Plateau Karst
In northern and central Arizona, the Kaibab Limestone and its equivalents are karstic. North of the Grand Canyon, subterranean openings are primarily widely spaced fissures, while south of the Grand Canyon, fissures are more closely spaced and a few shallow caves are present.Karst Aquifers: Edwards Balcones Fault Zone Aquifer
The Edwards aquifer is the most transmissive of all the aquifers in Texas and Oklahoma, with large discharges from springs and from flowing and pumped wells. This aquifer demonstrates karst features such as springs and in-stream sinkholes, as well as endangered species.Karst Aquifers: Edwards-Trinity Plateau Aquifer
The Edwards-Trinity aquifer, located in the Trans-Pecos and the Edwards Plateau areas, is composed of relatively flat-lying rocks that are generally exposed at the land surface. This aquifer is generally recharged by precipitation; water is mostly unconfined in the shallow parts of the aquifer and is confined in the deeper zones.Karst Aquifers: Upper Floridan and Biscayne Aquifers
Covering approximately 100,000 square miles of the southeastern United States, the Floridan aquifer system (FAS) is one of the most productive aquifers in the world. The FAS is the primary source of drinking water for almost 10 million people, with nearly 50 percent of all water withdrawals being used for industrial purposes and agricultural irrigation.Karst Aquifers: Madison Aquifer
The Madison aquifer underlies eight states in the U.S. and Canada. It is an important water resource in the northern plains states where surface water supplies are limited and population is increasing. Declining water levels are a major issue for many of the communities that rely on this aquifer.Karst Aquifers: Midwest Paleozoic Carbonate Aquifers
The porosity of carbonate and dolomitic units in Midwest Paleozoic rocks has been enhanced by dissolution, and in many areas these rocks have undergone extensive karst development. This aquifer demonstrates karst features such as disappearing streams, springs, and caves.Karst Aquifers: New England Karst Aquifers
The New England Karst Aquifers feature crystalline limestones and marbles, narrow fissures, and some small caves.Karst Aquifers: Ozark Plateau Karst Aquifers
The Ozark Plateaus aquifer system consists of two aquifers, the Springfield Plateau aquifer and the Ozark aquifer, and an intervening confining unit. The system consists of mostly of carbonate rocks that are Cambrian through Mississippian in age.Karst Aquifers: Roswell Basin Aquifer
The Roswell Artesian Basin consists of an eastward-dipping carbonate aquifer overlain by a leaky evaporitic confining unit, overlain in turn by an unconfined alluvial aquifer. This aquifer provides habitat for several federally listed endangered invertebrate species. Decades of intensive pumping have caused substantial declines in hydraulic head in the aquifer.Karst Aquifers: Pacific Northwest Pseudokarst Aquifers
Pseudokarst features such as lava tubes, fissures, open sinkholes, and caves, are extensive in some regions of the west. Some of the largest regions with this type of pseudokarst are located in the Pacific Northwest, including the Snake River area of Idaho, part of the Columbia Basalt Plateau in Washington and Oregon, and in the lava fields of northeastern California. - Publications
Below are publications associated with this karst aquifer.
Filter Total Items: 15Multiple technologies applied to characterization of the porosity and permeability of the Biscayne aquifer, Florida
Research is needed to determine how seepage-control actions planned by the Comprehensive Everglades Restoration Plan (CERP) will affect recharge, groundwater flow, and discharge within the dual-porosity karstic Biscayne aquifer where it extends eastward from the Everglades to Biscayne Bay. A key issue is whether the plan can be accomplished without causing urban flooding in adjacent populated areaAuthorsK.J. Cunningham, M.C. SukopHydrologic Conditions that Influence Streamflow Losses in a Karst Region of the Upper Peace River, Polk County, Florida
The upper Peace River from Bartow to Fort Meade, Florida, is described as a groundwater recharge area, reflecting a reversal from historical groundwater discharge patterns that existed prior to the 1950s. The upper Peace River channel and floodplain are characterized by extensive karst development, with numerous fractures, crevasses, and sinks that have been eroded in the near-surface and underlyiAuthorsP. A. Metz, B. R. LewellingHydrology, Water Quality, and Aquatic Communities of Selected Springs in the St. Johns River Water Management District, Florida
Hydrologic, physicochemical, and aquatic community data were collected and compiled by the U.S. Geological Survey for selected springs within the St. Johns River Water Management District from January 2004 to October 2007. Nine springs were included in this study: Alexander, Apopka, Bugg, De Leon, Gemini, Green, Rock, Silver Glen, and Wekiwa. Urban lands increased in Alexander, Apopka, De Leon, GeAuthorsStephen J. Walsh, Leel Knowles, Brian G. Katz, Douglas G. StromProminence of ichnologically influenced macroporosity in the karst Biscayne aquifer: Stratiform "super-K" zones
A combination of cyclostratigraphic, ichnologic, and borehole geophysical analyses of continuous core holes; tracer-test analyses; and lattice Boltzmann flow simulations was used to quantify biogenic macroporosity and permeability of the Biscayne aquifer, southeastern Florida. Biogenic macroporosity largely manifests as: (1) ichnogenic macroporosity primarily related to postdepositional burrowingAuthorsK.J. Cunningham, M.C. Sukop, H. Huang, P.F. Alvarez, H.A. Curran, R.A. Renken, J.F. DixonNMR imaging of fluid exchange between macropores and matrix in eogenetic karst
Sequential time-step images acquired using nuclear magnetic resonance (NMR) show the displacement of deuterated water (D2O) by fresh water within two limestone samples characterized by a porous and permeable limestone matrix of peloids and ooids. These samples were selected because they have a macropore system representative of some parts of the eogenetic karst limestone of the Biscayne Aquifer inAuthorsL.J. Florea, K.J. Cunningham, S. AltobelliSynthesis of the Hydrogeologic Framework of the Floridan Aquifer System and Delineation of a Major Avon Park Permeable Zone in Central and Southern Florida
The carbonate Floridan aquifer system of central and southern Florida (south of a latitude of about 29 degrees north) is an invaluable resource with a complex framework that has previously been mapped and managed primarily in a subregional context according to geopolitical boundaries. As interest and use of the Floridan aquifer system in this area increase, a consistent regional hydrogeologic framAuthorsRonald S. Reese, Emily RichardsonPathogen and chemical transport in the karst limestone of the Biscayne aquifer: 3. Use of microspheres to estimate the transport potential of Cryptosporidium parvum oocysts
The vulnerability of a municipal well in the Northwest well field in southeastern Florida to potential contamination by Cryptosporidium parvum oocysts was assessed in a large‐scale, forced‐gradient (convergent) injection and recovery test. The field study involved a simultaneous pulse introduction of a nonreactive tracer (SF6, an inert gas) and oocyst‐sized (1.6, 2.9, and 4.9 μm diameter) carboxylAuthorsRonald W. Harvey, David W. Metge, Allen M. Shapiro, Robert A. Renken, Christina L. Osborn, Joseph N. Ryan, Kevin J. Cunningham, Lee L. LandkamerPathogen and chemical transport in the karst limestone of the Biscayne aquifer: 1. Revised conceptualization of groundwater flow
The Biscayne aquifer is a highly transmissive karst limestone that serves as the sole source of drinking water to over two million residents in south Florida. The aquifer is characterized by eogenetic karst, where the most transmissive void space can be an interconnected, touching‐vug, biogenically influenced porosity of biogenic origin. Public supply wells in the aquifer are in close proximity toAuthorsRobert A. Renken, Kevin J. Cunningham, Allen M. Shapiro, Ronald W. Harvey, Michael R. Zygnerski, David W. Metge, Michael A. WackerPathogen and chemical transport in the karst limestone of the Biscayne aquifer: 2. Chemical retention from diffusion and slow advection
A tracer experiment, using a nonreactive tracer, was conducted as part of an investigation of the potential for chemical and pathogen migration to public supply wells that draw groundwater from the highly transmissive karst limestone of the Biscayne aquifer in southeastern Florida. The tracer was injected into the formation over approximately 1 h, and its recovery was monitored at a pumping well aAuthorsAllen M. Shapiro, Robert A. Renken, Ronald W. Harvey, Michael R. Zygnerski, David W. MetgeHydrology of Polk County, Florida
Local water managers usually rely on information produced at the State and regional scale to make water-resource management decisions. Current assessments of hydrologic and water-quality conditions in Polk County, Florida, commonly end at the boundaries of two water management districts (South Florida Water Management District and the Southwest Florida Water Management District), which makes it diAuthorsRick M. Spechler, Sharon E. KroeningA cyclostratigraphic and borehole-geophysical approach to development of a three-dimensional conceptual hydrogeologic model of the karstic Biscayne aquifer, southeastern Florida
A fundamental problem in the simulation of karst ground-water flow and solute transport is how best to represent aquifer heterogeneity as defined by the spatial distribution of porosity, permeability, and storage. Combined analyses of cyclostratigraphy, including lithofacies and depositional environments, and borehole-geophysical logs, has improved the conceptualization of porosity, permeability,AuthorsKevin J. Cunningham, Michael A. Wacker, Edward Robinson, Joann F. Dixon, G. Lynn WingardApplication of carbonate cyclostratigraphy and borehole geophysics to delineate porosity and preferential flow in the karst limestone of the Biscayne aquifer, SE Florida
Combined analyses of cores, borehole geophysical logs, and cyclostratigraphy produced a new conceptual hydrogeologic framework for the triple-porosity (matrix, touching-vug, and conduit porosity) karst limestone of the Biscayne aquifer in a 0.65 km2 study area, SE Florida. Vertical lithofacies successions, which have recurrent stacking patterns, fit within high-frequency cycles. We define three idAuthorsKevin J. Cunningham, Robert A. Renken, Michael A. Wacker, M.R. Zygnerski, E. Robinson, Allen M. Shapiro, G. Lynn Wingard