Karst Aquifers: Valley and Ridge, Piedmont, and Blue Ridge Aquifers
The carbonate aquifers of the Appalachian Valley and Ridge Province, formed during Appalachian mountain building, have highly variable karst aquifer characteristics. The Valley and Ridge, Piedmont, and Blue Ridge Aquifers demonstrate karst features such as caves, sinkholes, sinking streams, and conduits.
The carbonate aquifers of the Appalachian Valley and Ridge Province are formed within a thick Paleozoic sequence of layered carbonate and siliciclastic rocks that were highly folded and faulted during Appalachian mountain building. Fluid flow thus has been through complex geologic structures, resulting in highly variable karst aquifer characteristics with a wide range of groundwater residence times, geochemical characteristics, and aquifer compartmentalization. Cave geometries likewise are variable, ranging from small, isolated caves of limited extent to some of the longest and deepest caves known in the United States.
The Great Valley aquifer is the primary carbonate aquifer in the Valley and Ridge Province, formed within a sequence of Cambrian and Ordovician rocks over 10,000 feet (3,048 meters) thick. This aquifer is an important water resource for numerous cities and towns along the Interstate 81 corridor from Tennessee to Pennsylvania.
The northern extent of the Great Valley in Virginia, West Virginia, and Maryland has been particularly well studied, especially within the drainage basin of the Shenandoah River. Larger springs typical of the Shenandoah Valley karst aquifer are 4th and 5th magnitude (10-500 gal/min; 0.6 to 28 L/sec) artesian springs, most with relatively muted discharge variability. Geologic structure strongly influences spring locations, discharge and geochemistry. Spring discharge accounts for more than 85% of stream flow in the Shenandoah River basin. As a result, surface-water quantity and quality is highly dependent on groundwater use and management. Circulation of groundwater through conduits exceeds depths of 2000 feet (610 meters) as evidenced by a small number of high-yield deep wells. Most wells are finished less than 300 feet (100 meters) below land surface and may yield between 1-150 gal/min (0.063-9.45 L/s). While the majority of springs have ambient water temperatures, many mildly thermal springs have been identified.
The Shenandoah Valley karst hosts a number of unique endemic species. Of note is the Madison Cave Isopod (Antrolana lira), a crustacean of originally marine ancestry found only caves containing fresh groundwater in the Shenandoah Valley region.
Sinkholes
Featured Studies and Datasets
Aquifer-scale studies and the datasets they produce are a key component to understanding how karst aquifers behave, and the quality of water within them.
- Assessment of the Northern Shenandoah Valley karst aquifer — Hydrogeologic assessment and simulation of groundwater flow.
Additional Information
The following websites are additional sources of information about this aquifer:
Below are other science projects associated with karst aquifers.
Karst Aquifers
Karst Aquifers: Arbuckle-Simpson Aquifer
Karst Aquifers: Basin and Range and Bear River Range Carbonate Aquifers
Karst Aquifers: Colorado Plateau Karst
Karst Aquifers: Edwards Balcones Fault Zone Aquifer
Karst Aquifers: Edwards-Trinity Plateau Aquifer
Karst Aquifers: Upper Floridan and Biscayne Aquifers
Karst Aquifers: Madison Aquifer
Karst Aquifers: Midwest Paleozoic Carbonate Aquifers
Karst Aquifers: New England Karst Aquifers
Karst Aquifers: Ozark Plateau Karst Aquifers
Karst Aquifers: Roswell Basin Aquifer
Karst Aquifers: Pacific Northwest Pseudokarst Aquifers
Below are publications associated with this karst aquifer.
Hydrogeology and Ground-Water Flow in the Opequon Creek Watershed area, Virginia and West Virginia
Bedrock structural controls on the occurrence of sinkholes and springs in the Northern Great Valley Karst, Virginia and West Virginia
Hydrogeology and water quality of the Leetown area, West Virginia
Use of sinkhole and specific capacity distributions to assess vertical gradients in a karst aquifer
Hydrogeologic Setting and Ground-Water Flow in the Leetown Area, West Virginia
Relation of Chlorofluorocarbon Ground-Water Age Dates to Water Quality in Aquifers of West Virginia
Fracture trace map and single-well aquifer test results in a carbonate aquifer in Jefferson County, West Virginia
Fracture trace map and single-well aquifer test results in a carbonate aquifer in Berkeley County, West Virginia
Large springs in the Valley and Ridge physiographic province of Pennsylvania
The carbonate aquifers of the Appalachian Valley and Ridge Province, formed during Appalachian mountain building, have highly variable karst aquifer characteristics. The Valley and Ridge, Piedmont, and Blue Ridge Aquifers demonstrate karst features such as caves, sinkholes, sinking streams, and conduits.
The carbonate aquifers of the Appalachian Valley and Ridge Province are formed within a thick Paleozoic sequence of layered carbonate and siliciclastic rocks that were highly folded and faulted during Appalachian mountain building. Fluid flow thus has been through complex geologic structures, resulting in highly variable karst aquifer characteristics with a wide range of groundwater residence times, geochemical characteristics, and aquifer compartmentalization. Cave geometries likewise are variable, ranging from small, isolated caves of limited extent to some of the longest and deepest caves known in the United States.
The Great Valley aquifer is the primary carbonate aquifer in the Valley and Ridge Province, formed within a sequence of Cambrian and Ordovician rocks over 10,000 feet (3,048 meters) thick. This aquifer is an important water resource for numerous cities and towns along the Interstate 81 corridor from Tennessee to Pennsylvania.
The northern extent of the Great Valley in Virginia, West Virginia, and Maryland has been particularly well studied, especially within the drainage basin of the Shenandoah River. Larger springs typical of the Shenandoah Valley karst aquifer are 4th and 5th magnitude (10-500 gal/min; 0.6 to 28 L/sec) artesian springs, most with relatively muted discharge variability. Geologic structure strongly influences spring locations, discharge and geochemistry. Spring discharge accounts for more than 85% of stream flow in the Shenandoah River basin. As a result, surface-water quantity and quality is highly dependent on groundwater use and management. Circulation of groundwater through conduits exceeds depths of 2000 feet (610 meters) as evidenced by a small number of high-yield deep wells. Most wells are finished less than 300 feet (100 meters) below land surface and may yield between 1-150 gal/min (0.063-9.45 L/s). While the majority of springs have ambient water temperatures, many mildly thermal springs have been identified.
The Shenandoah Valley karst hosts a number of unique endemic species. Of note is the Madison Cave Isopod (Antrolana lira), a crustacean of originally marine ancestry found only caves containing fresh groundwater in the Shenandoah Valley region.
Sinkholes
Featured Studies and Datasets
Aquifer-scale studies and the datasets they produce are a key component to understanding how karst aquifers behave, and the quality of water within them.
- Assessment of the Northern Shenandoah Valley karst aquifer — Hydrogeologic assessment and simulation of groundwater flow.
Additional Information
The following websites are additional sources of information about this aquifer:
Below are other science projects associated with karst aquifers.
Karst Aquifers
Karst Aquifers: Arbuckle-Simpson Aquifer
Karst Aquifers: Basin and Range and Bear River Range Carbonate Aquifers
Karst Aquifers: Colorado Plateau Karst
Karst Aquifers: Edwards Balcones Fault Zone Aquifer
Karst Aquifers: Edwards-Trinity Plateau Aquifer
Karst Aquifers: Upper Floridan and Biscayne Aquifers
Karst Aquifers: Madison Aquifer
Karst Aquifers: Midwest Paleozoic Carbonate Aquifers
Karst Aquifers: New England Karst Aquifers
Karst Aquifers: Ozark Plateau Karst Aquifers
Karst Aquifers: Roswell Basin Aquifer
Karst Aquifers: Pacific Northwest Pseudokarst Aquifers
Below are publications associated with this karst aquifer.