Jack Eggleston is the Chief of the Hydrologic Remote Sensing Branch for the USGS Water Resources Mission Area.
Science and Products
Near-field remote sensing of surface velocity and river discharge using radars and the probability concept at 10 USGS streamgages
Near-field remote sensing of surface velocity and river discharge (discharge) were measured using coherent, continuous wave Doppler and pulsed radars. Traditional streamgaging requires sensors be deployed in the water column; however, near-field remote sensing has the potential to transform streamgaging operations through non-contact methods in the U.S. Geological Survey (USGS) and other agencies
Hydrogeologic framework and simulation of predevelopment groundwater flow, eastern Abu Dhabi Emirate, United Arab Emirates
Groundwater in eastern Abu Dhabi in the United Arab Emirates is an important resource that is widely used for irrigation and domestic supplies in rural areas. The U.S. Geological Survey and the Environment Agency—Abu Dhabi cooperated on an investigation to integrate existing hydrogeologic information and to answer questions about regional groundwater resources in Abu Dhabi by developing a numerica
Remote sensing of river flow in Alaska—New technology to improve safety and expand coverage of USGS streamgaging
The U.S. Geological Survey monitors water level (water surface elevation relative to an arbitrary datum) and measures streamflow in Alaska rivers to compute and compile river flow records for use by water resource planners, engineers, and land managers to design infrastructure, manage floodplains, and protect life, property, and aquatic resources. Alaska has over 800,000 miles of rivers including
Hydrologic conditions and simulation of groundwater and surface water in the Great Dismal Swamp of Virginia and North Carolina
The U.S. Geological Survey (USGS), in cooperation with the U.S Fish and Wildlife Service, has investigated the hydrology of the Great Dismal Swamp (Swamp) National Wildlife Refuge (Refuge) in Virginia and North Carolina and developed a three-dimensional numerical model to simulate groundwater and surface-water hydrology. The model was developed with MODFLOW-NWT, a USGS numerical groundwater flow m
Use of historic Persian water system data in groundwater models: Examples from Afghanistan and Emirates
Obtaining calibration data for models depicting conditions during pre-development periods can be challenging as such periods are characteristically data poor. This study presents two examples where simulation of historic water conveyance structures were used to help characterize historic, or pre-modern, conditions in calibration of groundwater flow models. Persian water conveyance structures, cal
Assessing the magnitude and timing of anthropogenic warming of a shallow aquifer: example from Virginia Beach, USA
Groundwater temperature measurements in a shallow coastal aquifer in Virginia Beach, Virginia, USA, suggest groundwater warming of +4.1 °C relative to deeper geothermal gradients. Observed warming is related to timing and depth of influence of two potential thermal drivers—atmospheric temperature increases and urbanization. Results indicate that up to 30 % of groundwater warming at the water table
Old groundwater in parts of the upper Patapsco aquifer, Atlantic Coastal Plain, Maryland, USA: Evidence from radiocarbon, chlorine-36 and helium-4
Apparent groundwater ages along two flow paths in the upper Patapsco aquifer of the Maryland Atlantic Coastal Plain, USA, were estimated using 14C, 36Cl and 4He data. Most of the ages range from modern to about 500 ka, with one sample at 117 km downgradient from the recharge area dated by radiogenic 4He accumulation at more than one Ma. Last glacial maximum (LGM) water was located about 20 km down
Outdoor water use and water conservation opportunities in Virginia Beach, Virginia
How much water do you use to water your lawn, wash your car, or fill your swimming pool? Your answers to these questions have important implications for water supplies in the City of Virginia Beach. To help find the answers, the City cooperated with the U.S. Geological Survey (USGS) and Old Dominion University to learn more about seasonal outdoor water use. In the summer of 2008 the USGS surveyed
Simulation of ground-water flow and evaluation of water-management alternatives in the upper Charles River basin, eastern Massachusetts
Ground water is the primary source of drinking water for towns in the upper Charles River Basin, an area of 105 square miles in eastern Massachusetts that is undergoing rapid growth. The stratified-glacial aquifers in the basin are high yield, but also are thin, discontinuous, and in close hydraulic connection with streams, ponds, and wetlands. Water withdrawals averaged 10.1 million gallons per d
Satellite-based Remote Sensing of River Discharge
The U.S. Geological Survey and NASA are collaborating on a study to develop methods to estimate river flows from satellite observations.
Science and Products
- Publications
Near-field remote sensing of surface velocity and river discharge using radars and the probability concept at 10 USGS streamgages
Near-field remote sensing of surface velocity and river discharge (discharge) were measured using coherent, continuous wave Doppler and pulsed radars. Traditional streamgaging requires sensors be deployed in the water column; however, near-field remote sensing has the potential to transform streamgaging operations through non-contact methods in the U.S. Geological Survey (USGS) and other agenciesHydrogeologic framework and simulation of predevelopment groundwater flow, eastern Abu Dhabi Emirate, United Arab Emirates
Groundwater in eastern Abu Dhabi in the United Arab Emirates is an important resource that is widely used for irrigation and domestic supplies in rural areas. The U.S. Geological Survey and the Environment Agency—Abu Dhabi cooperated on an investigation to integrate existing hydrogeologic information and to answer questions about regional groundwater resources in Abu Dhabi by developing a numericaRemote sensing of river flow in Alaska—New technology to improve safety and expand coverage of USGS streamgaging
The U.S. Geological Survey monitors water level (water surface elevation relative to an arbitrary datum) and measures streamflow in Alaska rivers to compute and compile river flow records for use by water resource planners, engineers, and land managers to design infrastructure, manage floodplains, and protect life, property, and aquatic resources. Alaska has over 800,000 miles of rivers includingHydrologic conditions and simulation of groundwater and surface water in the Great Dismal Swamp of Virginia and North Carolina
The U.S. Geological Survey (USGS), in cooperation with the U.S Fish and Wildlife Service, has investigated the hydrology of the Great Dismal Swamp (Swamp) National Wildlife Refuge (Refuge) in Virginia and North Carolina and developed a three-dimensional numerical model to simulate groundwater and surface-water hydrology. The model was developed with MODFLOW-NWT, a USGS numerical groundwater flow mUse of historic Persian water system data in groundwater models: Examples from Afghanistan and Emirates
Obtaining calibration data for models depicting conditions during pre-development periods can be challenging as such periods are characteristically data poor. This study presents two examples where simulation of historic water conveyance structures were used to help characterize historic, or pre-modern, conditions in calibration of groundwater flow models. Persian water conveyance structures, calAssessing the magnitude and timing of anthropogenic warming of a shallow aquifer: example from Virginia Beach, USA
Groundwater temperature measurements in a shallow coastal aquifer in Virginia Beach, Virginia, USA, suggest groundwater warming of +4.1 °C relative to deeper geothermal gradients. Observed warming is related to timing and depth of influence of two potential thermal drivers—atmospheric temperature increases and urbanization. Results indicate that up to 30 % of groundwater warming at the water tableOld groundwater in parts of the upper Patapsco aquifer, Atlantic Coastal Plain, Maryland, USA: Evidence from radiocarbon, chlorine-36 and helium-4
Apparent groundwater ages along two flow paths in the upper Patapsco aquifer of the Maryland Atlantic Coastal Plain, USA, were estimated using 14C, 36Cl and 4He data. Most of the ages range from modern to about 500 ka, with one sample at 117 km downgradient from the recharge area dated by radiogenic 4He accumulation at more than one Ma. Last glacial maximum (LGM) water was located about 20 km downOutdoor water use and water conservation opportunities in Virginia Beach, Virginia
How much water do you use to water your lawn, wash your car, or fill your swimming pool? Your answers to these questions have important implications for water supplies in the City of Virginia Beach. To help find the answers, the City cooperated with the U.S. Geological Survey (USGS) and Old Dominion University to learn more about seasonal outdoor water use. In the summer of 2008 the USGS surveyedSimulation of ground-water flow and evaluation of water-management alternatives in the upper Charles River basin, eastern Massachusetts
Ground water is the primary source of drinking water for towns in the upper Charles River Basin, an area of 105 square miles in eastern Massachusetts that is undergoing rapid growth. The stratified-glacial aquifers in the basin are high yield, but also are thin, discontinuous, and in close hydraulic connection with streams, ponds, and wetlands. Water withdrawals averaged 10.1 million gallons per d - News
- Science
Satellite-based Remote Sensing of River Discharge
The U.S. Geological Survey and NASA are collaborating on a study to develop methods to estimate river flows from satellite observations.