Konrad Hafen is a hydrologist with the USGS Idaho Water Science Center in Boise, Idaho.
Konrad is involved with various hydrological modeling projects throughout the United States. His primary work addresses how data can be collected and implemented to improve hydrological predictions in headwater streams at regional extents. Konrad is also interested in developing open source tools and models to aid with hydrological data collection and prediction.
Education and Certifications
PhD, Water Resources Science and Management, 2021, University of Idaho
MS, Ecology, 2017, Utah State University
BS, Wildlife Science, 2014, Utah State University
Minors in GIS and Fisheries Science
Science and Products
Precision of headwater stream permanence estimates from a monthly water balance model in the Pacific Northwest, USA
Stream permanence classifications (i.e., perennial, intermittent, ephemeral) are a primary consideration to determine stream regulatory status in the United States (U.S.) and are an important indicator of environmental conditions and biodiversity. However, at present, no models or products adequately describe surface water presence for regulatory determinations. We modified the Thornthwaite monthl
Beyond streamflow: Call for a national data repository of streamflow presence for streams and rivers in the United States
Observations of the presence or absence of surface water in streams are useful for characterizing streamflow permanence, which includes the frequency, duration, and spatial extent of surface flow in streams and rivers. Such data are particularly valuable for headwater streams, which comprise the vast majority of channel length in stream networks, are often non-perennial, and are frequently the mos
The influence of climate variability on the accuracy of NHD perennial and non-perennial stream classifications
National Hydrography Dataset (NHD) stream permanence classifications (SPC; perennial, intermittent, and ephemeral) are widely used for data visualization and applied science, and have implications for resource policy and management. NHD SPC were assigned using a combination of topographic field surveys and interviews with local residents. However, previous studies indicate that non‐NHD, in situ st
Probability of streamflow permanence model (PROSPER): A spatially continuous model of annual streamflow permanence throughout the Pacific Northwest
The U.S. Geological Survey (USGS) has developed the PRObability of Streamflow PERmanence (PROSPER) model, a GIS raster-based empirical model that provides streamflow permanence probabilities (probabilistic predictions) of a stream channel having year-round flow for any unregulated and minimally-impaired stream channel in the Pacific Northwest region, U.S. The model provides annual predictions for
Potentially Resolvable National Hydrography Dataset Waterbodies and Flowlines from Landsat Images in the United States (excluding Alaska)
This data release presents two datasets including waterbodies (reservoirs, lakes, ponds, wetlands, etc.) and flowlines (stream reaches) from the high-resolution National Hydrography Dataset Plus (NHDPlus HR) that are potentially observable from Landsat images for the United States (excluding Alaska). To determine where National Hydrography Dataset Plus high resolution (NHDPlus HR; USGS 2019) featu
Sensitivity and precision of stream permanence estimates (1977-2019) from the USGS Thornthwaite Monthly Water Balance Model in the Pacific Northwest, USA
This dataset includes inputs and results for parameterizing the USGS Thornthwaite Monthly Water Balance Model (MWBM) to simulate annual stream permanence on National Hydrography Dataset (NHD) stream reaches. Also included are results from sensitivity analysis of MWBM parameters to final stream permanence classification (permanent or nonpermanent). The dataset includes files that link PRISM climate
Science and Products
- Publications
Precision of headwater stream permanence estimates from a monthly water balance model in the Pacific Northwest, USA
Stream permanence classifications (i.e., perennial, intermittent, ephemeral) are a primary consideration to determine stream regulatory status in the United States (U.S.) and are an important indicator of environmental conditions and biodiversity. However, at present, no models or products adequately describe surface water presence for regulatory determinations. We modified the Thornthwaite monthlBeyond streamflow: Call for a national data repository of streamflow presence for streams and rivers in the United States
Observations of the presence or absence of surface water in streams are useful for characterizing streamflow permanence, which includes the frequency, duration, and spatial extent of surface flow in streams and rivers. Such data are particularly valuable for headwater streams, which comprise the vast majority of channel length in stream networks, are often non-perennial, and are frequently the mosThe influence of climate variability on the accuracy of NHD perennial and non-perennial stream classifications
National Hydrography Dataset (NHD) stream permanence classifications (SPC; perennial, intermittent, and ephemeral) are widely used for data visualization and applied science, and have implications for resource policy and management. NHD SPC were assigned using a combination of topographic field surveys and interviews with local residents. However, previous studies indicate that non‐NHD, in situ stProbability of streamflow permanence model (PROSPER): A spatially continuous model of annual streamflow permanence throughout the Pacific Northwest
The U.S. Geological Survey (USGS) has developed the PRObability of Streamflow PERmanence (PROSPER) model, a GIS raster-based empirical model that provides streamflow permanence probabilities (probabilistic predictions) of a stream channel having year-round flow for any unregulated and minimally-impaired stream channel in the Pacific Northwest region, U.S. The model provides annual predictions for - Data
Potentially Resolvable National Hydrography Dataset Waterbodies and Flowlines from Landsat Images in the United States (excluding Alaska)
This data release presents two datasets including waterbodies (reservoirs, lakes, ponds, wetlands, etc.) and flowlines (stream reaches) from the high-resolution National Hydrography Dataset Plus (NHDPlus HR) that are potentially observable from Landsat images for the United States (excluding Alaska). To determine where National Hydrography Dataset Plus high resolution (NHDPlus HR; USGS 2019) featuSensitivity and precision of stream permanence estimates (1977-2019) from the USGS Thornthwaite Monthly Water Balance Model in the Pacific Northwest, USA
This dataset includes inputs and results for parameterizing the USGS Thornthwaite Monthly Water Balance Model (MWBM) to simulate annual stream permanence on National Hydrography Dataset (NHD) stream reaches. Also included are results from sensitivity analysis of MWBM parameters to final stream permanence classification (permanent or nonpermanent). The dataset includes files that link PRISM climate - News