Marc Stewart is the Deputy Director for Data at the USGS Oregon Water Science Center.
Science and Products
ORWSC Field Methods Training Workshop
Announcing the ORWSC's "Training for Advancement in Hydrologic Data Processing and Technical Field Skills" from Monday, April 30, 2018 to Thursday, May 3, 2018, at Camp Rilea, Oregon.
A call for strategic water-quality monitoring to advance assessment and prediction of wildfire impacts on water supplies
Wildfires pose a risk to water supplies in the western U.S. and many other parts of the world, due to the potential for degradation of water quality. However, a lack of adequate data hinders prediction and assessment of post-wildfire impacts and recovery. The dearth of such data is related to lack of funding for monitoring extreme events and the challenge of measuring the outsized hydrologic and e
Historical streamflow and stage data compilation for the Lower Columbia River, Pacific Northwest
The U.S. Geological Survey mined data from a variety of national and state agencies including USGS, Oregon Water Resources Department, National Oceanic and Atmospheric Administration, Washington Department of Ecology, Pacific Northwest National Laboratory, Portland State University, and U.S. Army Corps of Engineers. A comprehensive dataset of streamflow, stage, and tidal elevations for the Lower C
Nutrient loads in the Lost River and Klamath River Basins, south-central Oregon and northern California, March 2012–March 2015
The U.S. Geological Survey and Bureau of Reclamation collected water-quality data from March 2012 to March 2015 at locations in the Lost River and Klamath River Basins, Oregon, in an effort to characterize water quality and compute a nutrient budget for the Bureau of Reclamation Klamath Reclamation Project. The study described in this report resulted in the following significant findings:Total pho
Evaluating external nutrient and suspended-sediment loads to Upper Klamath Lake, Oregon, using surrogate regressions with real-time turbidity and acoustic backscatter data
Executive SummarySuspended-sediment and total phosphorus loads were computed for two sites in the Upper Klamath Basin on the Wood and Williamson Rivers, the two main tributaries to Upper Klamath Lake. High temporal resolution turbidity and acoustic backscatter data were used to develop surrogate regression models to compute instantaneous concentrations and loads on these rivers. Regression models
Modeling hydrodynamics, water temperature, and water quality in the Klamath River upstream of Keno Dam, Oregon, 2006-09
A hydrodynamic, water temperature, and water-quality model was constructed for a 20-mile reach of the Klamath River downstream of Upper Klamath Lake, from Link River to Keno Dam, for calendar years 2006-09. The two-dimensional, laterally averaged model CE-QUAL-W2 was used to simulate water velocity, ice cover, water temperature, specific conductance, dissolved and suspended solids, dissolved oxyge
Surface-Water Exchange through Culverts beneath State Road 9336 within Everglades National Park, 2004-05
The U.S. Geological Survey collected hydrologic data between June 2004 and December 2005 to investigate the temporal and spatial nature of flow exchanges through culverts beneath State Road 9336 within Everglades National Park. Continuous data collected during the study measured flow velocity, water level, salinity, conductivity, and water-temperature in or near seven culverts between Pa-hay-okee
Klamath River Water Quality and Acoustic Doppler Current Profiler Data from Link River Dam to Keno Dam, 2007
In 2007, the U.S. Geological Survey, Watercourse Engineering, and the Bureau of Reclamation began a project to construct and calibrate a water quality and hydrodynamic model of the 21-mile reach of the Klamath River from Link River Dam to Keno Dam. To provide a basis for this work, data collection and experimental work were planned for 2007 and 2008. This report documents sampling and analytical m
Science and Products
- Science
ORWSC Field Methods Training Workshop
Announcing the ORWSC's "Training for Advancement in Hydrologic Data Processing and Technical Field Skills" from Monday, April 30, 2018 to Thursday, May 3, 2018, at Camp Rilea, Oregon. - Publications
A call for strategic water-quality monitoring to advance assessment and prediction of wildfire impacts on water supplies
Wildfires pose a risk to water supplies in the western U.S. and many other parts of the world, due to the potential for degradation of water quality. However, a lack of adequate data hinders prediction and assessment of post-wildfire impacts and recovery. The dearth of such data is related to lack of funding for monitoring extreme events and the challenge of measuring the outsized hydrologic and eHistorical streamflow and stage data compilation for the Lower Columbia River, Pacific Northwest
The U.S. Geological Survey mined data from a variety of national and state agencies including USGS, Oregon Water Resources Department, National Oceanic and Atmospheric Administration, Washington Department of Ecology, Pacific Northwest National Laboratory, Portland State University, and U.S. Army Corps of Engineers. A comprehensive dataset of streamflow, stage, and tidal elevations for the Lower CNutrient loads in the Lost River and Klamath River Basins, south-central Oregon and northern California, March 2012–March 2015
The U.S. Geological Survey and Bureau of Reclamation collected water-quality data from March 2012 to March 2015 at locations in the Lost River and Klamath River Basins, Oregon, in an effort to characterize water quality and compute a nutrient budget for the Bureau of Reclamation Klamath Reclamation Project. The study described in this report resulted in the following significant findings:Total phoEvaluating external nutrient and suspended-sediment loads to Upper Klamath Lake, Oregon, using surrogate regressions with real-time turbidity and acoustic backscatter data
Executive SummarySuspended-sediment and total phosphorus loads were computed for two sites in the Upper Klamath Basin on the Wood and Williamson Rivers, the two main tributaries to Upper Klamath Lake. High temporal resolution turbidity and acoustic backscatter data were used to develop surrogate regression models to compute instantaneous concentrations and loads on these rivers. Regression modelsModeling hydrodynamics, water temperature, and water quality in the Klamath River upstream of Keno Dam, Oregon, 2006-09
A hydrodynamic, water temperature, and water-quality model was constructed for a 20-mile reach of the Klamath River downstream of Upper Klamath Lake, from Link River to Keno Dam, for calendar years 2006-09. The two-dimensional, laterally averaged model CE-QUAL-W2 was used to simulate water velocity, ice cover, water temperature, specific conductance, dissolved and suspended solids, dissolved oxygeSurface-Water Exchange through Culverts beneath State Road 9336 within Everglades National Park, 2004-05
The U.S. Geological Survey collected hydrologic data between June 2004 and December 2005 to investigate the temporal and spatial nature of flow exchanges through culverts beneath State Road 9336 within Everglades National Park. Continuous data collected during the study measured flow velocity, water level, salinity, conductivity, and water-temperature in or near seven culverts between Pa-hay-okeeKlamath River Water Quality and Acoustic Doppler Current Profiler Data from Link River Dam to Keno Dam, 2007
In 2007, the U.S. Geological Survey, Watercourse Engineering, and the Bureau of Reclamation began a project to construct and calibrate a water quality and hydrodynamic model of the 21-mile reach of the Klamath River from Link River Dam to Keno Dam. To provide a basis for this work, data collection and experimental work were planned for 2007 and 2008. This report documents sampling and analytical m