Skip to main content
U.S. flag

An official website of the United States government

Images

Images intro.
Filter Total Items: 695
Bathymetric map of the West Thumb Basin, Yellowstone National Park
Bathymetric map of the West Thumb Basin, Yellowstone National Park
Bathymetric map of the West Thumb Basin, Yellowstone National Park
Bathymetric map of the West Thumb Basin, Yellowstone National Park

Bathymetric map of the West Thumb Basin showing numerous mapped active or inactive hydrothermal vent sites (small white circles) and sampled hot springs (white stars or larger white circles) and sediment cores (yellow diamonds).  The white-black line represents the 160,000-year-old West Thumb Caldera margin.  West Thumb Geyser Basin is near the southern en

Bathymetric map of the West Thumb Basin showing numerous mapped active or inactive hydrothermal vent sites (small white circles) and sampled hot springs (white stars or larger white circles) and sediment cores (yellow diamonds).  The white-black line represents the 160,000-year-old West Thumb Caldera margin.  West Thumb Geyser Basin is near the southern en

Plot showing frequency of rhyolite eruptions in the Yellowstone region over the past 1.3 million years
Schematic summary of rhyolite eruptions in the Yellowstone Plateau volcanic field over the past 1.3 million years
Schematic summary of rhyolite eruptions in the Yellowstone Plateau volcanic field over the past 1.3 million years
Schematic summary of rhyolite eruptions in the Yellowstone Plateau volcanic field over the past 1.3 million years

Schematic summary of rhyolite eruptions in the Yellowstone Plateau volcanic field over the past 1.3 million years. Smaller rhyolite eruptions are known intracaldera eruptions, meaning they occurred within existing caldera structures. Additional rhyolite eruptions that occurred outside the caldera are not included in the figure.

Schematic summary of rhyolite eruptions in the Yellowstone Plateau volcanic field over the past 1.3 million years. Smaller rhyolite eruptions are known intracaldera eruptions, meaning they occurred within existing caldera structures. Additional rhyolite eruptions that occurred outside the caldera are not included in the figure.

A brass-disk benchmark set in the top of a concrete post.  Mark is stamped "C9 1923 7337.580"
Benchmark C9, near Apollinaris Spring in Yellowstone National Park
Benchmark C9, near Apollinaris Spring in Yellowstone National Park
Benchmark C9, near Apollinaris Spring in Yellowstone National Park

Benchmark C9, installed by the US Coast and Geodetic Survey (now the National Geodetic Survey) in 1923 near Apollinaris Spring in Yellowstone National Park.  The number stamped into the mark, “7337.580,” is the elevation in feet that was determined by surveys the year the benchmark was established.  USGS photo by Michael Poland, September 4, 2024.

Benchmark C9, installed by the US Coast and Geodetic Survey (now the National Geodetic Survey) in 1923 near Apollinaris Spring in Yellowstone National Park.  The number stamped into the mark, “7337.580,” is the elevation in feet that was determined by surveys the year the benchmark was established.  USGS photo by Michael Poland, September 4, 2024.

Small map of the Colorado River Basin
Colorado_River_Basin_small.jpg
Colorado_River_Basin_small.jpg
Colorado_River_Basin_small.jpg

Reduced-size map of the Colorado River Basin from the USGS ASIST Initiative, Sept. 3, 2024

Map of the Colorado River Basin
Map of Colorado River Basin
Map of Colorado River Basin
Map of Colorado River Basin

Map of the Colorado River Basin in Wyoming, Colorado, Utah, Nevada, California, Arizona, and New Mexico

Large Map of the Colorado River Basin
coloradoriverbasinviausgs_0 (1).png
coloradoriverbasinviausgs_0 (1).png
coloradoriverbasinviausgs_0 (1).png

Large map of the Colorado River Basin prepared for the USGS Colorado River Basin ASIST Initiative

Dead lodgepole pine trees along the shoreline of a small lake.  Live trees are present away from the shore.
Dead trees along the edge of Nuphar Lake, Yellowstone National Park, in summer 2024
Dead trees along the edge of Nuphar Lake, Yellowstone National Park, in summer 2024
Dead trees along the edge of Nuphar Lake, Yellowstone National Park, in summer 2024

Photo of dead trees along the edge of Nuphar Lake.  The white staining at the base of the trees is a telltale sign that the trees were immersed in thermal water containing silica.  USGS photo by Mike Poland, September 1, 2024.

Satellite images of a small lake in April and August 2024. The lake is surrounded by trees and, on one side, a geyser basin.
Satellite images of Nupahr Lake, Norris Geyser Basin, in 2024
Satellite images of Nupahr Lake, Norris Geyser Basin, in 2024
Satellite images of Nupahr Lake, Norris Geyser Basin, in 2024

High-resolution satellite images of Norris Geyser Basin showing the area of Porcelain Basin and Nuphar Lake (both images cover the same area).  In the left image, acquired on April 2, 2024, springs on Porcelain Terrace are full of water, and warm hydrothermal water is flowing into Nuphar Lake from the area circled in yellow.  This warm water kept the north

High-resolution satellite images of Norris Geyser Basin showing the area of Porcelain Basin and Nuphar Lake (both images cover the same area).  In the left image, acquired on April 2, 2024, springs on Porcelain Terrace are full of water, and warm hydrothermal water is flowing into Nuphar Lake from the area circled in yellow.  This warm water kept the north

Marsh in foreground, tree-covered hill in background with a steam vent at it's base, all under blue sky
new thermal feature that formed in 2024 near Nymph Lake, Yellowstone National Park
new thermal feature that formed in 2024 near Nymph Lake, Yellowstone National Park
new thermal feature that formed in 2024 near Nymph Lake, Yellowstone National Park

Looking south from near a pullout along the Mammoth to Norris road just north of the Nymph Lake overlook. On the other side of the marsh is a tree-covered rhyolite lava flow, and at the base of the flow is a new thermal feature marked by a plume of steam and that formed in early August 2024.   Photo by Mike Poland, USGS, September 1, 2024.

Looking south from near a pullout along the Mammoth to Norris road just north of the Nymph Lake overlook. On the other side of the marsh is a tree-covered rhyolite lava flow, and at the base of the flow is a new thermal feature marked by a plume of steam and that formed in early August 2024.   Photo by Mike Poland, USGS, September 1, 2024.

Marsh in the foreground, treed hill in the background. Steam vent at base of hill. Blue sky above.
New steam vent that formed in 2024 near Nymph Lake, Yellowstone National Park
New steam vent that formed in 2024 near Nymph Lake, Yellowstone National Park
New steam vent that formed in 2024 near Nymph Lake, Yellowstone National Park

New steam vent at the base of a hill north of Nymph Lake, west of the highway and between Norris Geyser Basin and Roaring Mountain. USGS photo by Mike Poland, September 1, 2024.

small V-shaped valley with tan/white walls and sporadic small trees
Death Gulch, Yellowstone National Park
Death Gulch, Yellowstone National Park
Death Gulch, Yellowstone National Park

USGS scientists equipped with gas masks and monitors exploring Death Gulch. Photo by Shaul Hurwitz, September 2024.

USGS scientists equipped with gas masks and monitors exploring Death Gulch. Photo by Shaul Hurwitz, September 2024.

Two photos showing warm springs in a river, one zoomed out to show vegetation, another zoomed in on bubbling water
Wahb Springs, Yellowstone National Park
Wahb Springs, Yellowstone National Park
Wahb Springs, Yellowstone National Park

Wahb Springs in Yellowstone National Park.  Left: zoomed-out photo of the springs (photo by David Roth, September 2024). Right: close-up photo showing the unique organic material floating on the spring water (photo by Shaul Hurwitz, September 2024).

Wahb Springs in Yellowstone National Park.  Left: zoomed-out photo of the springs (photo by David Roth, September 2024). Right: close-up photo showing the unique organic material floating on the spring water (photo by Shaul Hurwitz, September 2024).

A river winds through a meadow at sunset, with pink clouds in the sky.  Trees are in the background.
Gibbon River near Norris Geyser Basin in Yellowstone National Park
Gibbon River near Norris Geyser Basin in Yellowstone National Park
Gibbon River near Norris Geyser Basin in Yellowstone National Park

Gibbon River near Norris Geyser Basin in Yellowstone National Park at sunset.  USGS Photo by Mike Poland, August 28, 2024.

Geologist on a hillside within a barren landscape of reddish and pale rocks
Geologist examining Lava Creek Tuff ash fall beds near Shell, Wyoming
Geologist examining Lava Creek Tuff ash fall beds near Shell, Wyoming
Geologist examining Lava Creek Tuff ash fall beds near Shell, Wyoming

Professor C.J.N. Wilson, FRS, pays due homage to the Lava Creek Tuff ashfall bed in a basin just east of Shell, Wyoming. Photo by Madison Myers, Montana State University, August 9, 2024.

Shaded relief location map for the East Gallatin-Reese Creek fault system in northwest Yellowstone National Park
Shaded relief location map for the East Gallatin-Reese Creek fault system in northwest Yellowstone National Park
Shaded relief location map for the East Gallatin-Reese Creek fault system in northwest Yellowstone National Park
A blue pool with an irregular edge surrounded by barren ground and yellow grass. A boardwalk is in the foreground;.
Abyss Pool, West Thumb Geyser Basin, Yellowstone National Park
Abyss Pool, West Thumb Geyser Basin, Yellowstone National Park
Abyss Pool, West Thumb Geyser Basin, Yellowstone National Park

Abyss Pool is about 16 m (53 ft) deep and contains alkaline-chloride hydrothermal fluids that in the summer of 2024 had a temperature of 181 °F (83 °C).

Frothy blue-green mud pots surrounded by grassy areas. Trees and Yellowstone Lake in the background under partly cloudy sky.
Mud pots in West Thumb Geyser Basin, Yellowstone National Park
Mud pots in West Thumb Geyser Basin, Yellowstone National Park
Mud pots in West Thumb Geyser Basin, Yellowstone National Park

Mud pots form in a few selected areas of West Thumb Geyser Basin where low-pH acidic fluids dissolve rocks and soil to produce clay-rich muds.  USGS photo by Pat Shanks, 2024.

Steam vent in barren ground.  Light white silica coating dusts the surroundings.  Forested area in the background
Closeup view of hydrothermal feature that formed near Nymph Lake, Yellowstone National Park, in August 2024
Closeup view of hydrothermal feature that formed near Nymph Lake, Yellowstone National Park, in August 2024
Closeup view of hydrothermal feature that formed near Nymph Lake, Yellowstone National Park, in August 2024

Looking southeast at the hydrothermal feature that formed in August 2024 just north of Nymph Lake. Steam is emanating from a vent that is partially full of water to create the frying pan feature nestled in the newly formed vent. A thin grey layer of silica mud covers the vent area.  Photo by Jefferson Hungerford, Yellowstone National Park, August 2024.

Looking southeast at the hydrothermal feature that formed in August 2024 just north of Nymph Lake. Steam is emanating from a vent that is partially full of water to create the frying pan feature nestled in the newly formed vent. A thin grey layer of silica mud covers the vent area.  Photo by Jefferson Hungerford, Yellowstone National Park, August 2024.

Photomicrograph showing a quartz-hosted embayment from the Mesa Falls Tuff, accompanied by a map showing the location of the tuff in eastern Idaho.
Quartz-hosted embayment from the Mesa Falls Tuff
Quartz-hosted embayment from the Mesa Falls Tuff
Quartz-hosted embayment from the Mesa Falls Tuff

(A) Photomicrograph of a quartz-hosted embayment from the Mesa Falls Tuff. “MI” indicates a glassy inclusion of melt within the crystal. (B) Thickness (in centimeters) and extent of the Mesa Falls ash flow deposit (pink areas) and its source, Henrys Fork Caldera (dashed line).  Figure by Kenneth Befus, University of Texas at Austin.

(A) Photomicrograph of a quartz-hosted embayment from the Mesa Falls Tuff. “MI” indicates a glassy inclusion of melt within the crystal. (B) Thickness (in centimeters) and extent of the Mesa Falls ash flow deposit (pink areas) and its source, Henrys Fork Caldera (dashed line).  Figure by Kenneth Befus, University of Texas at Austin.

Comparison photos showing the same spring in a barren area. The surface of the pool is black in 2018, but blue in 2023.
Cinder Pool, located in the southwest part of 100 Spring Plain in Norris Geyser Basin, Yellowstone National Park
Cinder Pool, located in the southwest part of 100 Spring Plain in Norris Geyser Basin, Yellowstone National Park
Cinder Pool, located in the southwest part of 100 Spring Plain in Norris Geyser Basin, Yellowstone National Park

Cinder Pool, located in the southwest part of 100 Spring Plain in Norris Geyser Basin, Yellowstone National Park. The pool was known for “cinders” made of sulfur that condensed after rising from a molten layer at the bottom of the pool, but after 2019 those cinders disappeared.  Photos from June 2018 (left) and June 2023 (right) by Lauren Harrison.

Cinder Pool, located in the southwest part of 100 Spring Plain in Norris Geyser Basin, Yellowstone National Park. The pool was known for “cinders” made of sulfur that condensed after rising from a molten layer at the bottom of the pool, but after 2019 those cinders disappeared.  Photos from June 2018 (left) and June 2023 (right) by Lauren Harrison.

Gray rock outcrop partially covered in pine needles, with some lodgepole pines growing nearby.
Exposure of the Mount Jackson Rhyolite Series vitrophyre at Gibbon River
Exposure of the Mount Jackson Rhyolite Series vitrophyre at Gibbon River
Exposure of the Mount Jackson Rhyolite Series vitrophyre at Gibbon River

Exposure of the Mount Jackson Rhyolite Series vitrophyre at Gibbon River. Boulders of weathered, lichen-covered rock show how easy it is to overlook these new units. Photo by Liv Wheeler, Montana State University, August 2024.

Exposure of the Mount Jackson Rhyolite Series vitrophyre at Gibbon River. Boulders of weathered, lichen-covered rock show how easy it is to overlook these new units. Photo by Liv Wheeler, Montana State University, August 2024.

Was this page helpful?