Hurricanes Florence and Michael caused extensive damage to coastal communities in North and South Carolina when they made landfall in September and October of 2018, respectively.
Erosion and widespread flooding due to the coupling of heavy rainfall and strong storm surge increased immediate and long-term hazards to shorelines, including densely populated areas, putting critical infrastructure at risk of future storm impacts and causing economic losses. The 2019 Disaster Supplemental Appropriation enabled the USGS Coastal and Marine Hazards and Resources Program to: (1) temporarily increase staff working on new rapid-response mapping techniques; (2) develop tools that more accurately forecast the intensity, location, and impacts of extreme events by accounting for compound impacts; and (3) map future coastal flooding and erosion hazards to guide infrastructure planning. This work will aid post-storm repair and recovery efforts in North and South Carolina by improving hurricane impact models for coastlines and updating assessments and models of coastal vulnerability to future storms.
To help stakeholders, such as the U.S. National Park Service and U.S. Army Corps of Engineers (USACE), rapidly assess storm impacts, plan field operations, and evaluate risks to natural resources, USGS developed new workflows (Over et al., 2021a) and techniques to evaluate and significantly improve the ability to use aerial imagery to measure coastal change along U.S. shorelines (e.g., Outer Banks and North Core Banks, North Carolina; Ritchie et al., 2021). Techniques for storing and processing imagery entirely in the cloud and on USGS High Performance Computing resources allow before and after comparisons of hurricane impacts to be available to stakeholders within hours after a storm to help facilitate response activities, as demonstrated immediately following Hurricanes Isaias and Laura. New imagery of North Core Banks has provided an unprecedented view of the effects of sound-side flooding and erosion, resulting in new concepts for the response to and recovery from major coastal events (Over et al., 2021b).
Federal agencies, emergency management offices, and local coastal planners rely on accurate storm forecasts to help make decisions that will safeguard lives and property along the coast. Many existing forecast models only account for singular weather phenomena. To more accurately forecast the impacts of hurricanes and storms, USGS developed tools that combine sophisticated models to provide more realistic scenarios. New techniques to predict the compound impacts (i.e., increased flooding) of ocean surge and riverine rainfall flows (Yin et al., 2021) are provided to NOAA NWS to enhance coastal flood forecasting of the NOAA National Water Model. USGS has also developed techniques to better model hurricane intensity and rainfall distribution (Porchetta, et al., 2020; Zambon, et al., 2021) and understand accompanying impacts of meteotsunamis, which can be generated during tropical cyclones and strong frontal systems and can cause severe damage and loss of life (Shi et al., 2020). To provide guidance for future infrastructure planning, USGS is mapping future coastal flooding and erosion hazards that can be expected due to sea-level rise and storms in North Carolina and South Carolina. These assessments include flood extent, depth, duration, and uncertainty for 28 unique sea-level rise and storm scenarios, future erosion hazard zones for 6 future sea-level rise scenarios, and depth to water table for 7 sea-level rise scenarios. Hazard zones will be translated into socioeconomic impacts and reported in the Hazard Exposure Reporting and Analytics (HERA)
Additional Resources:
Total Water Level and Coastal Change Forecast Viewer
Related Content
Storm-Induced Overwash Extent
National Assessment of Hurricane-Induced Coastal Erosion Hazards
Post-Hurricane Florence Aerial Imagery: Cape Fear to Duck, North Carolina, October 6-8, 2018
Lidar-derived Beach Morphology (Dune Crest, Dune Toe, and Shoreline) for U.S. Sandy Coastlines
Ground Control Point Locations, Elevations and Photographs From North Topsail Beach and Camp Lejeune, North Carolina, June 2019
Storm-Induced Coastal Change Forecasts: Archive of Individual Storm Events
Impact of SST and surface waves on Hurricane Florence (2018): A coupled modeling investigation
Related Content
- Data
Storm-Induced Overwash Extent
The National Assessment of Coastal Change Hazards project exists to understand and predict storm impacts to our nation's coastlines. This data release defines the alongshore extent of overwash deposits, determined from aerial photograph analysis, attributed to coastal processes during storm events. Note: This data release was versioned on September 16, 2021. Please see the Suggested Citation sectNational Assessment of Hurricane-Induced Coastal Erosion Hazards
These datasets contain information on the probabilities of hurricane-induced erosion (collision, inundation, and overwash) for each 1-km section of the United States sandy open-ocean coastline for category 1-5 hurricanes. The analysis is based on a storm-impact scaling model (Sallenger, 2000; https://www.jstor.org/stable/4300099) that uses observations of beach morphology combined with sophisticatPost-Hurricane Florence Aerial Imagery: Cape Fear to Duck, North Carolina, October 6-8, 2018
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods.Lidar-derived Beach Morphology (Dune Crest, Dune Toe, and Shoreline) for U.S. Sandy Coastlines
The USGS National Assessment of Coastal Change Hazards project aims to identify areas of the nation's coastline that are most vulnerable to extreme storms and long-term shoreline change. These assessments require coastal elevation data across diverse geographic regions and covering a time span of many years. The datasets published here, organized by individual field activity numbers (FANs), definGround Control Point Locations, Elevations and Photographs From North Topsail Beach and Camp Lejeune, North Carolina, June 2019
Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center collected location data (horizontal and vertical coordinates) for 53 Ground Control Points (GCP) in North Topsail Beach and within the Camp Lejeune Marine Corps Base, North Carolina, in June 2019. These GCPs were used to georectify aerial imagery taken post-Hurricane Florence (landfall September 14,Storm-Induced Coastal Change Forecasts: Archive of Individual Storm Events
These data sets contain information on the probabilities of storm-induced erosion (collision, inundation and overwash) on sandy beaches along the U.S. Gulf and Atlantic coasts during real-time peak forecast conditions. The analysis is based on a storm-impact scaling model that uses observations of beach morphology combined with sophisticated hydrodynamic models to predict how the coast will respon - Publications
Impact of SST and surface waves on Hurricane Florence (2018): A coupled modeling investigation
Hurricane Florence (2018) devastated the coastal communities of the Carolinas through heavy rainfall that resulted in massive flooding. Florence was characterized by an abrupt reduction in intensity (Saffir-Simpson Category 4 to Category 1) just prior to landfall and synoptic-scale interactions that stalled the storm over the Carolinas for several days. We conducted a series of numerical modeling