Climate change is widely acknowledged to have a profound effect on the biosphere and cryosphere with many and diverse impacts on global resources. Mountain ecosystems in the western U.S., and the U.S. Northern Rocky Mountains in particular, are highly sensitive to climate change. Warming in western Montana is nearly 2 times greater than the rise in global temperatures over the last 100+ years (Pederson et al, 2010). In these mountainous areas, snowmelt provides almost 70% of the water that humans living in the western U.S. depend on (Li et. Al 2017). Additionally, they provide a host of other ecosystem services such as snow-based recreation, timber, habitat for unique flora and fauna, as well as habitat for species of conservation concern like bull trout and grizzly bear. USGS scientists with the Climate Change in Mountain Ecosystems (CCME) group, in conjunction with collaborators across the globe, study the connection between climate and snow on the landscape. Since 1991, studies of climate variability on glaciers, avalanche cycles, and patterns of snow distribution have provided land managers with data to make management decisions for future generations.
Below are other science projects associated with this project.
Climate change links fate of glaciers and rare alpine stream invertebrates in Glacier National Park
Glaciers—Understanding Climate Drivers
Science in Glacier National Park
Going-to-the-Sun Road Avalanche Forecasting Program
Repeat Photography Project
Status of Glaciers in Glacier National Park
Integrated bioassessment of imperiled alpine aquatic ecosystems using NPS vital signs and USGS research data: Implications for conservation under a warming climate
Below are data or web applications associated with this project.
Glaciers of Glacier National Park Repeat Photography Collection
Avalanche occurrence records along the Going-to-the-Sun Road, Glacier National Park, Montana from 2003-2023 (ver. 3.0, July 2023)
Tree ring dataset for a regional avalanche chronology in northwest Montana, 1636-2017
Glacier margin time series (1966, 1998, 2005, 2015) of the named glaciers of Glacier National Park, MT, USA
Below are publications associated with this project.
Assessing the seasonal evolution of snow depth spatial variability and scaling in complex mountain terrain
A regional spatio-temporal analysis of large magnitude snow avalanches using tree rings
Parsing complex terrain controls on mountain glacier response to climate forcing
Glacier retreat in Glacier National Park, Montana
Research Note: How old are the people who die in avalanches? A look into the ages of avalanche victims in the United States (1950-2018)
Reanalysis of the U.S. Geological Survey Benchmark Glaciers: Long-term insight into climate forcing of glacier mass balance
Glacier recession since the Little Ice Age: Implications for water storage in a Rocky Mountain landscape
Local topography increasingly influences the mass balance of a retreating cirque glacier
On the exchange of sensible and latent heat between the atmosphere and melting snow
Glaciological measurements and mass balances from Sperry Glacier, Montana, USA, years 2005–2015
Case study: 2016 Natural glide and wet slab avalanche cycle, Going-to-the-Sun Road, Glacier National Park, Montana, USA
Using structure from motion photogrammetry to examine glide snow avalanches
The Glacier - Climate Connection
The Glacier-Climate Connection geonarrative tells the story of the U.S. Geological Survey Benchmark Glacier Project, one of the longest running studies of glaciers on Earth.
Below are FAQ associated with this project.
What are the impacts of glacier loss, other than losing an aesthetic landscape feature?
Glaciers act as reservoirs of water that persist through summer. Continual melt from glaciers contributes water to the ecosystem throughout dry months, creating perennial stream habitat and a water source for plants and animals. The cold runoff from glaciers also affects downstream water temperatures. Many aquatic species in mountainous environments require cold water temperatures to survive. Some...
- Overview
Climate change is widely acknowledged to have a profound effect on the biosphere and cryosphere with many and diverse impacts on global resources. Mountain ecosystems in the western U.S., and the U.S. Northern Rocky Mountains in particular, are highly sensitive to climate change. Warming in western Montana is nearly 2 times greater than the rise in global temperatures over the last 100+ years (Pederson et al, 2010). In these mountainous areas, snowmelt provides almost 70% of the water that humans living in the western U.S. depend on (Li et. Al 2017). Additionally, they provide a host of other ecosystem services such as snow-based recreation, timber, habitat for unique flora and fauna, as well as habitat for species of conservation concern like bull trout and grizzly bear. USGS scientists with the Climate Change in Mountain Ecosystems (CCME) group, in conjunction with collaborators across the globe, study the connection between climate and snow on the landscape. Since 1991, studies of climate variability on glaciers, avalanche cycles, and patterns of snow distribution have provided land managers with data to make management decisions for future generations.
- Science
Below are other science projects associated with this project.
Climate change links fate of glaciers and rare alpine stream invertebrates in Glacier National Park
The extensive loss of glaciers in Glacier National Park (GNP) is iconic of the global impacts of climate warming in mountain ecosystems. However, little is known about how climate change may threaten alpine stream species, especially invertebrates, persisting below disappearing snow and ice masses in GNP. Two alpine stream invertebrates – the meltwater stonefly and the glacier stonefly – are...Glaciers—Understanding Climate Drivers
Across the globe, glaciers are decreasing in volume and number in response to climate change. Glaciers are important for agriculture, hydropower, recreation, tourism, and biological communities. Loss of glaciers contributes to sea-level rise, creates environmental hazards and can alter aquatic habitats. These are among the cascading effects linked to glacier loss which impact ecosystems and human...Science in Glacier National Park
Glacier National Park (GNP) is considered a stronghold for a large diversity of plant and animal species and harbors some of the last remaining populations of threatened and endangered species such as grizzly bear and bull trout, as well as non threatened keystone species such as bighorn sheep and black bear. The mountain ecosystems of GNP that support these species are dynamic and influenced by...Going-to-the-Sun Road Avalanche Forecasting Program
As the most popular attraction in Glacier National Park (GNP), the Going-to-the-Sun Road traverses scenic alpine zones and crosses the Continental Divide at Logan Pass (2026m or 6,647' elevation). The Park closes a 56km (34.8 mile) section of the road each winter due to inclement weather, heavy snowfall, and avalanche hazards. Annual spring opening of the road is a highly anticipated event for...Repeat Photography Project
Repeat photography provides objective visual evidence of landscape change. USGS scientists created approximately sixty repeat photography pairs that document glacier change in Glacier National Park. These photograph pairs are available as a collection hosted by the USGS Photographic Library and are publicly available for download. Modern (1997 to 2019) photographs were taken from precisely the...Status of Glaciers in Glacier National Park
Glaciers on the Glacier National Park (GNP) landscape have ecological value as a source of cold meltwater in the otherwise dry late summer months, and aesthetic value as the park’s namesake features. USGS scientists have studied these glaciers since the late 1800s, building a body of research that documents widespread glacier change over the past century. Ongoing USGS research pairs long-term data...Integrated bioassessment of imperiled alpine aquatic ecosystems using NPS vital signs and USGS research data: Implications for conservation under a warming climate
Climate warming in the mid- to high-latitudes and high-elevation mountainous regions is occurring more rapidly than anywhere else on Earth, causing extensive loss of glaciers and snowpack. The loss of glaciers in Glacier National Park (GNP) is iconic of the combined impacts of global warming and reduced snowpack−all remaining 25 glaciers are predicted to disappear by 2030. These changes will... - Data
Below are data or web applications associated with this project.
Glaciers of Glacier National Park Repeat Photography Collection
The “Glaciers of Glacier National Park Repeat Photography Collection” is a compilation of photographs documenting the retreat of glaciers in Glacier National Park, Montana, U.S.A. (GNP) through repeat photography. The collection is comprised of 58 image pairs, resulting from twenty-two years of U.S.Geological Survey (USGS) field excursions (1997-2019) for the purpose of photographically documentinAvalanche occurrence records along the Going-to-the-Sun Road, Glacier National Park, Montana from 2003-2023 (ver. 3.0, July 2023)
Starting in 2003, the U.S. Geological Survey (USGS) Northern Rocky Mountain Science Center in West Glacier, MT, in collaboration with the National Park Service, collected avalanche observations along the Going to the Sun Road during the spring road-clearing operations. The spring road-clearing along Going to the Sun Road utilized a team of avalanche specialists from the USGS and Glacier National PTree ring dataset for a regional avalanche chronology in northwest Montana, 1636-2017
This dataset includes processed tree ring data from avalanche paths in Glacier National Park and the Flathead National Forest in northwest Montana. The data were processed in three distinct phases that resulted in this dataset: collection, processing, and avalanche signal analysis. This dataset consists of samples from 647 trees with 2304 growth disturbances identified from 12 avalanche paths.Glacier margin time series (1966, 1998, 2005, 2015) of the named glaciers of Glacier National Park, MT, USA
This dataset was created to develop a time series and history of glacier recession in Glacier National Park (GNP), Montana, USA. The dataset delineates the 1966, 1998, 2005 and 2015 perimeters of the 37 named glaciers of Glacier National Park and two additional glaciers on U.S. Forest Services Flathead National Forest land (the Bob Marshall Wilderness Complex) which borders GNP to the south. Estab - Multimedia
- Publications
Below are publications associated with this project.
Filter Total Items: 28Assessing the seasonal evolution of snow depth spatial variability and scaling in complex mountain terrain
Dynamic natural processes govern snow distribution in mountainous environments throughout the world. Interactions between these different processes create spatially variable patterns of snow depth across a landscape. Variations in accumulation and redistribution occur at a variety of spatial scales, which are well established for moderate mountain terrain. However, spatial patterns of snow depth vAuthorsZachary Miller, Erich Peitzsch, Eric A. Sproles, Karl W. Birkeland, Ross T. PalomakiA regional spatio-temporal analysis of large magnitude snow avalanches using tree rings
Snow avalanches affect transportation corridors and settlements worldwide. In many mountainous regions, robust records of avalanche frequency and magnitude are sparse or non-existent. However, dendrochronological methods can be used to fill this gap and infer historical avalanche patterns. In this study, we developed a tree-ring-based avalanche chronology for large magnitude avalanche events (sizeAuthorsErich Peitzsch, Jordy Hendrikx, Daniel Kent Stahle, Gregory T. Pederson, Karl W. Birkeland, Daniel B. FagreParsing complex terrain controls on mountain glacier response to climate forcing
Glaciers are a key indicator of changing climate in the high mountain landscape. Glacier variations across a mountain range are ultimately driven by regional climate forcing. However, changes also reflect local, topographically driven processes such as snow avalanching, snow wind-drifting, and radiation shading as well as the initial glacier conditions such as hypsometry and ice thickness. Here weAuthorsCaitlyn Elizabeth Florentine, Joel T. Harper, Daniel B. FagreGlacier retreat in Glacier National Park, Montana
Currently, the volume of land ice on Earth is decreasing, driving consequential changes to global sea level and local stream habitat. Glacier retreat in Glacier National Park, Montana, U.S.A., is one example of land ice loss and glacier change. The U.S. Geological Survey Benchmark Glacier Project conducts glaciological research and collects field measurements across select North American glaciers,AuthorsCaitlyn FlorentineResearch Note: How old are the people who die in avalanches? A look into the ages of avalanche victims in the United States (1950-2018)
Since the winter of 1950-1951, 1084 individuals perished in snow avalanches in the United States. In this study, we analyze the ages of those killed (n=900) by applying non-parametric methods to annual median ages and for age groups and primary activity groups. Change point detection results suggest a significant change in 1990 in the median age of avalanche fatalities. Significant positive trendsAuthorsErich Peitzsch, Sara Boilen, Karl W. Birkeland, Spencer LoganReanalysis of the U.S. Geological Survey Benchmark Glaciers: Long-term insight into climate forcing of glacier mass balance
Mountain glaciers integrate climate processes to provide an unmatched signal of regional climate forcing. However, extracting the climate signal via intercomparison of regional glacier mass balance records can be problematic when methods for extrapolating and calibrating direct glaciological measurements are mixed or inconsistent. To address this problem, we reanalyzed and compared long-term massAuthorsShad O'Neel, Christopher J. McNeil, Louis C. Sass, Caitlyn Florentine, Emily Baker, Erich Peitzsch, Daniel J McGrath, Andrew G. Fountain, Daniel B. FagreGlacier recession since the Little Ice Age: Implications for water storage in a Rocky Mountain landscape
Glacial ice is a significant influence on local climate, hydrology, vegetation, and wildlife. We mapped a complete set of glacier areas from the Little Ice Age (LIA) using very high-resolution satellite imagery (30-cm) within Glacier National Park, a region that encompasses over 400,000 hectares. We measured glacier change across the park using LIA glacier area as a baseline and used this to estimAuthorsChelsea Mikle, Daniel B. FagreLocal topography increasingly influences the mass balance of a retreating cirque glacier
Local topographically driven processes – such as wind drifting, avalanching, and shading – are known to alter the relationship between the mass balance of small cirque glaciers and regional climate. Yet partitioning such local effects from regional climate influence has proven difficult, creating uncertainty in the climate representativeness of some glaciers. We address this problem for Sperry GlaAuthorsCaitlyn Florentine, Joel T. Harper, Daniel B. Fagre, Johnnie Moore, Erich H. PeitzschOn the exchange of sensible and latent heat between the atmosphere and melting snow
The snow energy balance is difficult to measure during the snowmelt period, yet critical for predictions of water yield in regions characterized by snow cover. Robust simplifications of the snowmelt energy balance can aid our understanding of water resources in a changing climate. Research to date has demonstrated that the net turbulent flux (FT) between a melting snowpack and the atmosphere is neAuthorsPaul C. Stoy, Erich H. Peitzsch, David J. A. Wood, Daniel Rottinghaus, Georg Wohlfahrt, Michael Goulden, Helen WardGlaciological measurements and mass balances from Sperry Glacier, Montana, USA, years 2005–2015
Glacier mass balance measurements help to provide an understanding of the behavior of glaciers and their response to local and regional climate. In 2005 the United States Geological Survey established a surface mass balance monitoring program on Sperry Glacier, Montana, USA. This project is the first quantitative study of mass changes of a glacier in the US northern Rocky Mountains and continues tAuthorsAdam Clark, Daniel B. Fagre, Erich H. Peitzsch, Blase A. Reardon, Joel T. HarperCase study: 2016 Natural glide and wet slab avalanche cycle, Going-to-the-Sun Road, Glacier National Park, Montana, USA
The Going-to-the-Sun Road (GTSR) is the premier tourist attraction in Glacier National Park, Montana. The GTSR also traverses through and under 40 avalanche paths which pose a hazard to National Park Service (NPS) road crews during the annual spring snow plowing operation. Through a joint collaboration between the NPS and the U.S. Geological Survey (USGS), a forecasting program primarily dealing wAuthorsJacob Hutchinson, Erich H. Peitzsch, Adam ClarkUsing structure from motion photogrammetry to examine glide snow avalanches
Structure from Motion (SfM), a photogrammetric technique, has been used extensively and successfully in many fields including geosciences over the past few years to create 3D models and high resolution digital elevation models (DEMs) from aerial or oblique photographs. SfM has recently been used in a limited capacity in snow avalanche research and shows promise as a tool for broader applications.AuthorsErich H. Peitzsch, Jordy Hendrikx, Daniel B. Fagre - Web Tools
The Glacier - Climate Connection
The Glacier-Climate Connection geonarrative tells the story of the U.S. Geological Survey Benchmark Glacier Project, one of the longest running studies of glaciers on Earth.
- FAQ
Below are FAQ associated with this project.
What are the impacts of glacier loss, other than losing an aesthetic landscape feature?
Glaciers act as reservoirs of water that persist through summer. Continual melt from glaciers contributes water to the ecosystem throughout dry months, creating perennial stream habitat and a water source for plants and animals. The cold runoff from glaciers also affects downstream water temperatures. Many aquatic species in mountainous environments require cold water temperatures to survive. Some...