Caitlyn Florentine, Ph.D.
Biography
Education
Ph.D. Geosciences. 2018. University of Montana, Missoula, Montana
M.S. Earth Sciences. 2011. Montana State University, Bozeman, Montana
B.A. Geology. 2007. Colorado College, Colorado Springs, Colorado
Research Interests
I research the cryosphere (frozen Earth) using an approach that integrates in situ data collected in the field, remotely-sensed data, and simple numerical models. My main research interest is in quantitative glaciology, especially regarding the physics of glacier flow and glacier-climate relationships. The snow and ice systems I study are intimately linked to the lithosphere, biosphere, and hydrosphere. My research therefore often overlaps with avalanche science, geology, geomorphology, ecology, and hydrology in alpine and Arctic settings. Currently I work with the U.S. Geological Survey Glaciers and Climate Project and the Climate Change in Mountain Ecosystems group.
Science and Products
USGS Benchmark Glacier Project
Scientists with the USGS Benchmark Glacier Project study the process and impacts of glacier change, including sea-level rise, water resources, environmental hazards and ecosystem links. At the core of this research are mass balance measurements at five glaciers in the United States. Since the 1960s, these glaciers have been studied using direct observations of glaciers and meteorology. The...
Glaciers and Climate Project
Scientists with the Glaciers and Climate Project study many of the pertinent impacts that glaciers present to society, such as altering hydrologic cycles, contributing to sea-level rise, and creating environmental hazards.
Climate Change in Mountain Ecosystems (CCME)
Climate change is widely acknowledged to have a profound effect on the biosphere and cryosphere with many and diverse impacts on global resources. Mountain ecosystems in the western U.S., and the U.S. Northern Rocky Mountains in particular, are highly sensitive to climate change. Warming in western Montana is nearly 2 times greater than the rise in global temperatures over the last 100+ years...
Brief History of Glaciers in Glacier National Park
The history of glaciation in Glacier National Park spans thousands of years of glacial growth and recession, carving the steep and striking mountain features we see today. Glaciers have been present within the boundaries of present-day Glacier National Park since as early as 6,500 years ago (Munroe and others, 2012). These modest glaciers varied in size, tracking climatic trends, but did not...
Specialized meltwater biodiversity persists despite widespread deglaciation
Glaciers are important drivers of environmental heterogeneity and biological diversity across mountain landscapes. Worldwide, glaciers are receding rapidly due to climate change, with important consequences for biodiversity in mountain ecosystems. However, the effects of glacier loss on biodiversity have never been quantified across a mountainous...
Muhlfeld, Clint C.; Cline, Timothy Joseph; Giersch, J. Joseph; Peitzsch, Erich; Florentine, Caitlyn; Jacobsen, Dean; Hotaling, ScottParsing complex terrain controls on mountain glacier response to climate forcing
Glaciers are a key indicator of changing climate in the high mountain landscape. Glacier variations across a mountain range are ultimately driven by regional climate forcing. However, changes also reflect local, topographically driven processes such as snow avalanching, snow wind-drifting, and radiation shading as well as the initial glacier...
Florentine, Caitlyn Elizabeth; Harper, Joel T.; Fagre, Daniel B.Glacier retreat in Glacier National Park, Montana
Currently, the volume of land ice on Earth is decreasing, driving consequential changes to global sea level and local stream habitat. Glacier retreat in Glacier National Park, Montana, U.S.A., is one example of land ice loss and glacier change. The U.S. Geological Survey Benchmark Glacier Project conducts glaciological research and collects field...
Florentine, CaitlynReanalysis of the U.S. Geological Survey Benchmark Glaciers: Long-term insight into climate forcing of glacier mass balance
Mountain glaciers integrate climate processes to provide an unmatched signal of regional climate forcing. However, extracting the climate signal via intercomparison of regional glacier mass balance records can be problematic when methods for extrapolating and calibrating direct glaciological measurements are mixed or inconsistent. To address this...
O'Neel, Shad; McNeil, Christopher J.; Sass, Louis C.; Florentine, Caitlyn; Baker, Emily; Peitzsch, Erich; McGrath, Daniel J; Fountain, Andrew G.; Fagre, Daniel B.Local topography increasingly influences the mass balance of a retreating cirque glacier
Local topographically driven processes – such as wind drifting, avalanching, and shading – are known to alter the relationship between the mass balance of small cirque glaciers and regional climate. Yet partitioning such local effects from regional climate influence has proven difficult, creating uncertainty in the climate representativeness of...
Florentine, Caitlyn; Harper, Joel T.; Fagre, Daniel B.; Moore, Johnnie; Peitzsch, Erich H.