Skip to main content
U.S. flag

An official website of the United States government


All of our publications are accessible through the USGS Publication Warehouse. Publications by scientists of the Oregon Water Science Center are listed below.

Filter Total Items: 697

Synthesis of habitat availability and carrying capacity research to support water management decisions and enhance conditions for Pacific salmon in the Willamette River, Oregon

Flow management is complex in the Willamette River Basin where the U.S. Army Corps of Engineers owns and operates a system of 13 dams and reservoirs (hereinafter Willamette Project), which are spread throughout three large tributaries including the Middle Fork Willamette, McKenzie, and Santiam Rivers. The primary purpose of the Willamette Project is flood-risk management, which provides critical p

Historical and paleoflood analyses for probabilistic flood-hazard assessments—Approaches and review guidelines

Paleoflood studies are an effective means of providing specific information on the recurrence and magnitude of rare and large floods. Such information can be combined with systematic flood measurements to better assess the frequency of large floods. Paleoflood data also provide valuable information about the linkages among climate, land use, flood-hazard assessments, and channel morphology. This d

Historical changes in bed elevation and water depth within the Nehalem Bay, Oregon, 1891–2019

Estuaries, at the nexus of rivers and the ocean, are depositional areas that respond to changes in streamflow, tides, sea level, and inputs of sediment from marine and watershed sources. Understanding changes in bed elevations, deposited and eroded sediment, and water depth throughout estuaries is relevant for understanding their present-day status and long-term evolution, identifying potential ha

Capacity assessment for Earth Monitoring, Analysis, and Prediction (EarthMAP) and future integrated monitoring and predictive science at the U.S. Geological Survey

Executive SummaryManagers of our Nation’s resources face unprecedented challenges driven by the convergence of increasing, competing societal demands and a changing climate that affects the stability, vulnerability, and predictability of those resources. To help meet these challenges, the scientific community must take advantage of all available technologies, data, and integrative Earth systems mo

Influence of redox gradients on nitrate transport from the landscape to groundwater and streams

Increases in nitrogen applications to the land surface since the 1950s have led to a cascade of negative environmental impacts, including degradation of drinking water supplies, nutrient enrichment of aquatic ecosystems and contributions to global climate change. In this study, groundwater, streambed porewater, and stream sampling were used to establish trends in nitrate concentrations and how red

Historical streamflow and stage data compilation for the Lower Columbia River, Pacific Northwest

The U.S. Geological Survey mined data from a variety of national and state agencies including USGS, Oregon Water Resources Department, National Oceanic and Atmospheric Administration, Washington Department of Ecology, Pacific Northwest National Laboratory, Portland State University, and U.S. Army Corps of Engineers. A comprehensive dataset of streamflow, stage, and tidal elevations for the Lower C

Using regional watershed data to assess water-quality impairment in the Pacific Drainages of the United States

Two datasets containing the first complete estimates of reach-scale nutrient, water use, dissolved oxygen, and pH conditions for the Pacific drainages of the United States were created to help inform water-quality management decisions in that region. The datasets were developed using easily obtainable watershed data, most of which have not been available until recently, and the techniques that wer

Risk-based wellhead protection decision support: A repeatable workflow approach

Environmental water management often benefits from a risk-based approach where information on the area of interest is characterized, assembled, and incorporated into a decision model considering uncertainty. This includes prior information from literature, field measurements, professional interpretation, and data assimilation resulting in a decision tool with a posterior uncertainty assessment acc

Groundwater, biodiversity, and the role of flow system scale

Groundwater-dependent ecosystems and species (GDEs) are found throughout watersheds at locations of groundwater discharge, yet not all GDEs are the same, nor are the groundwater systems supporting them. Groundwater moves along a variety of flow paths of different lengths and with different contributing areas, ranging from shorter local flow paths with low discharge and large seasonal variability t

Seasonally dynamic nutrient modeling quantifies storage lags and time-varying reactivity across large river basins

Nutrients that have gradually accumulated in soils, groundwaters, and river sediments in the United States over the past century can remobilize and increase current downstream loading, obscuring effects of conservation practices aimed at protecting water resources. Drivers of storage accumulation and release of nutrients are poorly understood at the spatial scale of basins to watersheds. Predictin

Climate impacts on source contributions and evaporation to flow in the Snake River Basin using surface water isoscapes (δ2H and δ18O)

Rising global temperatures are expected to decrease the precipitation amount that falls as snow, causing greater risk of water scarcity, groundwater overdraft, and fire in areas that rely on mountain snowpack for their water supply. Streamflow in large river basins varies with the amount, timing, and type of precipitation, evapotranspiration, and drainage properties of watersheds; however, these c

Sediment transport, turbidity, and dissolved oxygen responses to annual streambed drawdowns for downstream fish passage in a flood control reservoir

Sediment transport, turbidity, and dissolved oxygen were evaluated during six consecutive water years (2013–2018) of drawdowns of a flood control reservoir in the upper Willamette Valley, Oregon, USA. The drawdowns were conducted to allow volitional passage of endangered juvenile chinook salmon through the dam's regulating outlets by lowering the reservoir elevation to a point where the historical