Skip to main content
U.S. flag

An official website of the United States government

Images

Pacific Coastal and Marine Science Center images.

Filter Total Items: 1334
A man and two women crouch around a table with a computer screen that one of the women is pointing to while she talks.
Sharing information on the screen
Sharing information on the screen
Sharing information on the screen

Visitors watched closely as Alicia Balster-Gee (in green vest) presented our research on marine geohazards in Alaska.

A woman facing the camera talks to two men with their backs to the camera.
USGS Open House discussions
USGS Open House discussions
USGS Open House discussions

Members of the PCMSC Marine Minerals Team, including physical science technician Kira Mizell (center), took turns describing the importance of seafloor minerals.

Members of the PCMSC Marine Minerals Team, including physical science technician Kira Mizell (center), took turns describing the importance of seafloor minerals.

A man at right talks about and gestures at a rock on a table to another man who is squatting in front of the rock.
Talking about seafloor mineral deposits
Talking about seafloor mineral deposits
Coastal view of landslide area with sand, gravel, cobbles, and large rocks of all sizes on a slope.
Upper terrace of Mud Creek slide
Upper terrace of Mud Creek slide
Upper terrace of Mud Creek slide

Mud Creek slide from south side of north upper terrace (above north and south berms). Note tension cracks and offset on the terrace to the north.

Mud Creek slide from south side of north upper terrace (above north and south berms). Note tension cracks and offset on the terrace to the north.

A collage of 6 photos shwoing various ways in which data is collected in the field, both on land and in water.
Field survey methods
Field survey methods
Field survey methods

Photos of survey equipment used during surveys of the Elwha River delta, Washington, from 2010-2017, showing:

Photos of survey equipment used during surveys of the Elwha River delta, Washington, from 2010-2017, showing:

View of beach from roof top, edge of roof in foreground, pier extending from beach out over water in center, park in background.
Santa Cruz Main Beach Webcam Snapshot
Santa Cruz Main Beach Webcam Snapshot
Santa Cruz Main Beach Webcam Snapshot

Snapshot from video camera that sits atop the Dream Inn looks eastward over Main Beach and boardwalk in Santa Cruz, California.

View of a beach from up high on a roof with a pier, gentle waves, and an amusement park far off in the distance.
Santa Cruz Main Beach
Santa Cruz Main Beach
Santa Cruz Main Beach

Still-image from video camera atop the Dream Inn looks eastward over Main Beach and boardwalk in Santa Cruz, CA.

Still-image from video camera atop the Dream Inn looks eastward over Main Beach and boardwalk in Santa Cruz, CA.

A series of images from various sources of shaded-relief topography show the progression of the Mud Creek landslide area.
Mud Creek Shaded-Relief Topography, 2010-2017
Mud Creek Shaded-Relief Topography, 2010-2017
Mud Creek Shaded-Relief Topography, 2010-2017

A series of images from various sources of shaded-relief topography show the progression of the Mud Creek landslide area, from 2010 through October 12, 2017.

Sources:

A series of images showing a steep cliff along the coast from two different dates and the change between them.
Mud Creek Topo Change June 13-October 12 2017 View 2
Mud Creek Topo Change June 13-October 12 2017 View 2
Mud Creek Topo Change June 13-October 12 2017 View 2

In 2017, the massive Mud Creek landslide buried a quarter-mile of the famous coastal route, California’s Highway 1, with rocks and dirt more than 65 feet deep. USGS monitors erosion along the landslide-prone cliffs of Big Sur, collecting aerial photos frequently throughout the year.

In 2017, the massive Mud Creek landslide buried a quarter-mile of the famous coastal route, California’s Highway 1, with rocks and dirt more than 65 feet deep. USGS monitors erosion along the landslide-prone cliffs of Big Sur, collecting aerial photos frequently throughout the year.

A series of images showing a steep cliff along the coast from two different dates and the change between them.
Mud Creek Topo Change June 13-October 12 2017 View 1
Mud Creek Topo Change June 13-October 12 2017 View 1
Mud Creek Topo Change June 13-October 12 2017 View 1

In 2017, the massive Mud Creek landslide buried a quarter-mile of the famous coastal route, California’s Highway 1, with rocks and dirt more than 65 feet deep. USGS monitors erosion along the landslide-prone cliffs of Big Sur, collecting aerial photos frequently throughout the year.

In 2017, the massive Mud Creek landslide buried a quarter-mile of the famous coastal route, California’s Highway 1, with rocks and dirt more than 65 feet deep. USGS monitors erosion along the landslide-prone cliffs of Big Sur, collecting aerial photos frequently throughout the year.

A series of images showing a steep cliff along the coast from two different dates and the change between them.
Mud Creek Topo Change June 13-October 12 2017 View 3
Mud Creek Topo Change June 13-October 12 2017 View 3
Mud Creek Topo Change June 13-October 12 2017 View 3

In 2017, the massive Mud Creek landslide buried a quarter-mile of the famous coastal route, California’s Highway 1, with rocks and dirt more than 65 feet deep. USGS monitors erosion along the landslide-prone cliffs of Big Sur, collecting aerial photos frequently throughout the year.

In 2017, the massive Mud Creek landslide buried a quarter-mile of the famous coastal route, California’s Highway 1, with rocks and dirt more than 65 feet deep. USGS monitors erosion along the landslide-prone cliffs of Big Sur, collecting aerial photos frequently throughout the year.

A man wearing a hard hat navigates a drone toward a landing target with GPS equipment in the background.
Drone operations on Big Sur landslide, October 12, 2017
Drone operations on Big Sur landslide, October 12, 2017
Drone operations on Big Sur landslide, October 12, 2017

Josh Logan, a physical scientist at the USGS Pacific Coastal and Marine Science Center in Santa Cruz, California, operates an unmanned aerial system, or UAS, often called a "drone", that is equipped with a video camera.

View looking downhill towards the ocean and heavy equipment is driving around on dirt roads.
Earth movers on Big Sur landslide, October 12, 2017
Earth movers on Big Sur landslide, October 12, 2017
Earth movers on Big Sur landslide, October 12, 2017

View of the huge landslide at Mud Creek on the Big Sur coast, October 12, 2017. USGS is studying the landslide, collecting data and imagery that can be used to monitor changes. USGS provides the data to Caltrans, the California Department of Transportation, whose heavy equipment and earth movers are shown here.

View of the huge landslide at Mud Creek on the Big Sur coast, October 12, 2017. USGS is studying the landslide, collecting data and imagery that can be used to monitor changes. USGS provides the data to Caltrans, the California Department of Transportation, whose heavy equipment and earth movers are shown here.

Four photos looking from the sky at a coastal cliff area on different dates to show a landslide and work to clear it.
Mud Creek from June 13 to October 12, 2017
Mud Creek from June 13 to October 12, 2017
Mud Creek from June 13 to October 12, 2017

In 2017, the massive Mud Creek landslide buried a quarter-mile of the famous coastal route, California’s Highway 1, with rocks and dirt more than 65 feet deep. USGS monitors erosion along the landslide-prone cliffs of Big Sur, collecting aerial photos frequently throughout the year.

In 2017, the massive Mud Creek landslide buried a quarter-mile of the famous coastal route, California’s Highway 1, with rocks and dirt more than 65 feet deep. USGS monitors erosion along the landslide-prone cliffs of Big Sur, collecting aerial photos frequently throughout the year.

3 men leaning over big yellow metal grab bucket on the deck of a ship. Dark sediment is visible inside bucket
Examining bucket of seafloor sediment collected off southeast Alaska
Examining bucket of seafloor sediment collected off southeast Alaska
Examining bucket of seafloor sediment collected off southeast Alaska

USGS research geophysicist Danny Brothers (right) and colleagues examine the surface of a sediment grab sample just pulled onto the deck of the Canadian Coast Guard Ship John P. Tully. The sample was collected from the top of a mud volcano north of the border between southeast Alaska and British Columbia.

USGS research geophysicist Danny Brothers (right) and colleagues examine the surface of a sediment grab sample just pulled onto the deck of the Canadian Coast Guard Ship John P. Tully. The sample was collected from the top of a mud volcano north of the border between southeast Alaska and British Columbia.

boom & pulley w/ long slender equipment hanging over side of ship w/ 3 people in hard hats & life preservers standing at rail
Collecting a piston core of seafloor sediment off British Columbia
Collecting a piston core of seafloor sediment off British Columbia
Collecting a piston core of seafloor sediment off British Columbia

Scientists prepare to lower a piston corer off Haida Gwaii, British Columbia, to sample seafloor sediment near the Queen Charlotte-Fairweather fault. Expedition scientists are studying layers of sediment in the cores they collected to identify and determine ages of past earthquakes along the fault.

Scientists prepare to lower a piston corer off Haida Gwaii, British Columbia, to sample seafloor sediment near the Queen Charlotte-Fairweather fault. Expedition scientists are studying layers of sediment in the cores they collected to identify and determine ages of past earthquakes along the fault.

Two women stand at plywood table on which rest three long plastic tubes full of dark seafloor sediment.
Sampling core fluid from sediment cores collected off southeast Alaska
Sampling core fluid from sediment cores collected off southeast Alaska
Sampling core fluid from sediment cores collected off southeast Alaska

Mary McGann (left, USGS) and Rachel Lauer (University of Calgary) sample pore fluids from sediment cores collected aboard the Canadian Coast Guard Ship John P. Tully along the Queen Charlotte-Fairweather fault offshore of southeast Alaska.

Carol Reiss examining hydrothermal vent sample using hand lens
USGS geologist Carol Reiss examining hydrothermal vent sample
USGS geologist Carol Reiss examining hydrothermal vent sample
USGS geologist Carol Reiss examining hydrothermal vent sample

USGS geologist Carol Reiss examining hydrothermal vent sample using hand lens. Sulfide-silicate minerals precipitate from 330°C mineral laden water venting along volcanically active spreading ridges.

 USGS scientist Carol Reiss holding a hydrothermal vent sample; hydrothermal vent poster in the background
USGS scientist Carol Reiss holding a hydrothermal vent sample
USGS scientist Carol Reiss holding a hydrothermal vent sample
USGS scientist Carol Reiss holding a hydrothermal vent sample

USGS scientist Carol Reiss holding a hydrothermal vent sample. The poster in the background is a scientific rendering by Véronique Robigou (then at University of Washington) of a hydrothermal vent deposit with the submersible Alvin drawn to scale.

USGS scientist Carol Reiss holding a hydrothermal vent sample. The poster in the background is a scientific rendering by Véronique Robigou (then at University of Washington) of a hydrothermal vent deposit with the submersible Alvin drawn to scale.

Was this page helpful?