USGS scientists from the Pacific Coastal and Marine Science Center explore how sediment moves across San Francisco Bay tidal flats. The research team deploys a suite of large instrumented tripods to record sediment movements over a six-week period in early 2011. Answers from this work will help determine whether deposition of sediment at high tide is occ
Sediment transport between estuarine habitats in San Francisco Bay
We investigate mechanisms of sediment transport, resuspension dynamics in shoals, wave evolution in the shallows, wave attenuation in marshes, and transport of sediment between mudflats and marshes. We produce data sets for calibration of and comparison with sediment transport models, including wave parameters, suspended sediment concentration, and sediment flux.
This research is part of the project, “Sediment Transport in Coastal Environments.”
Objectives
Investigate mechanisms of sediment transport from shoals to channels
Investigate resuspension dynamics in subtidal and intertidal shoals, and determine critical shear stresses for these environments
Investigate wave evolution in the shallows, because of its critical importance to sediment resuspension
Investigate wave attenuation in marshes
Investigate transport of sediment between mudflats and marshes
Produce data sets for calibration of and comparison with sediment transport models, including wave parameters, suspended sediment concentration, and sediment flux.
Accomplishments
Four large deployments (30-40 instruments at 5-8 stations) measuring waves, currents, turbulence, and suspended sediment concentration have been completed: two in South San Francisco Bay, focused on exchange between shoal and channel, in collaboration with UC Berkeley; and two in San Pablo Bay, focused on transport between intertidal and subtidal regions, as part of a post-doctoral research project. See a video on this project. A smaller deployment in Corte Madera Bay was also completed, focused on wave attenuation in the shallows, as part of a larger San Francisco Bay Conservation and Development Commission project.
Learn about all of the “Sediment Transport in Coastal Environments” research studies by choosing a title below.
Sediment Transport in Coastal Environments
Coastal watershed and estuary restoration in the Monterey Bay area
Transport of invasive microorganisms
Sediment transport in submarine canyons
Columbia River estuary
Sediment transport between estuarine habitats in San Francisco Bay
Drag and sediment transport: conditions at the bottom boundary
San Francisco Bay geomorphology
Below are data releases associated with this project.
Hydrodynamic, sediment transport, and sediment flocculation data from south San Francisco Bay, California, summer 2020
Hydrodynamic and sediment transport data from San Pablo Bay and Grizzly Bay, California, 2020
Hydrodynamic and sediment transport model of San Pablo Bay, California, Nov-Dec 2014
Hydrodynamic and sediment transport data from San Pablo Bay and Grizzly Bay, California, 2019
Sediment transport and aquatic vegetation data from three locations in the Sacramento-San Joaquin Delta, California, 2017 to 2018
Below are multimedia items associated with this project.
Sediment Transport in San Francisco Bay
The Sacramento and San Joaquin Rivers deliver half the amount of sediment they did 50 years ago to San Francisco Bay. Just as sea-level rise is accelerating, the demand for sediment is growing.
USGS scientists from the Pacific Coastal and Marine Science Center explore how sediment moves across San Francisco Bay tidal flats. The research team deploys a suite of large instrumented tripods to record sediment movements over a six-week period in early 2011. Answers from this work will help determine whether deposition of sediment at high tide is occ
Below are publications associated with this project.
Cohesive sediment modeling in a shallow estuary: Model and environmental implications of sediment parameter variation
Numerical models of sediment transport in estuarine systems rely on parameter values that are often poorly constrained and can vary on timescales relevant to model processes. The selection of parameter values can affect the accuracy of model predictions, while environmental variation of these parameters can impact the temporal and spatial ranges of sediment fluxes, erosion, and deposition in the r
Seasonal variation in sediment delivery across the bay-marsh interface of an estuarine salt marsh
Seasonal, spring-neap, and tidal variation in cohesive sediment transport parameters in estuarine shallows
Numerical models for predicting sediment concentrations and transport rely on parameters such as settling velocity and bed erodibility that describe sediment characteristics, yet these parameters are rarely probed directly. We investigated temporal and spatial variation in sediment parameters in the shallows of San Pablo Bay, CA. Flow, turbulence, and suspended sediment data were measured at sites
Measuring settling velocity in a strongly tidal estuary
Predicting sediment transport in estuarine systems requires understanding sediment settling velocity, its range of fluctuations, and the shortcomings of the tools to measure it. Previous studies have used Laser In-Situ Scattering and Transmissometry (LISST) instruments to measure particle size and Acoustic Doppler Velocimeters (ADV) to return estimates of settling velocity. We deployed both instru
The influence of neap-spring tidal variation and wave energy on sediment flux in salt marsh tidal creeks
Wave attenuation across a tidal marsh in San Francisco Bay
Bathymetric survey and digital elevation model of Little Holland Tract, Sacramento-San Joaquin Delta, California
Wave attenuation in the shallows of San Francisco Bay
Mechanisms of sediment flux between shallows and marshes
Model-based interpretation of sediment concentration and vertical flux measurements in a shallow estuarine environment
Lateral baroclinic forcing enhances sediment transport from shallows to channel in an estuary
Interactions between waves, sediment, and turbulence on a shallow estuarine mudflat
We investigate mechanisms of sediment transport, resuspension dynamics in shoals, wave evolution in the shallows, wave attenuation in marshes, and transport of sediment between mudflats and marshes. We produce data sets for calibration of and comparison with sediment transport models, including wave parameters, suspended sediment concentration, and sediment flux.
This research is part of the project, “Sediment Transport in Coastal Environments.”
Objectives
Investigate mechanisms of sediment transport from shoals to channels
Investigate resuspension dynamics in subtidal and intertidal shoals, and determine critical shear stresses for these environments
Investigate wave evolution in the shallows, because of its critical importance to sediment resuspension
Investigate wave attenuation in marshes
Investigate transport of sediment between mudflats and marshes
Produce data sets for calibration of and comparison with sediment transport models, including wave parameters, suspended sediment concentration, and sediment flux.
Accomplishments
Four large deployments (30-40 instruments at 5-8 stations) measuring waves, currents, turbulence, and suspended sediment concentration have been completed: two in South San Francisco Bay, focused on exchange between shoal and channel, in collaboration with UC Berkeley; and two in San Pablo Bay, focused on transport between intertidal and subtidal regions, as part of a post-doctoral research project. See a video on this project. A smaller deployment in Corte Madera Bay was also completed, focused on wave attenuation in the shallows, as part of a larger San Francisco Bay Conservation and Development Commission project.
Learn about all of the “Sediment Transport in Coastal Environments” research studies by choosing a title below.
Sediment Transport in Coastal Environments
Coastal watershed and estuary restoration in the Monterey Bay area
Transport of invasive microorganisms
Sediment transport in submarine canyons
Columbia River estuary
Sediment transport between estuarine habitats in San Francisco Bay
Drag and sediment transport: conditions at the bottom boundary
San Francisco Bay geomorphology
Below are data releases associated with this project.
Hydrodynamic, sediment transport, and sediment flocculation data from south San Francisco Bay, California, summer 2020
Hydrodynamic and sediment transport data from San Pablo Bay and Grizzly Bay, California, 2020
Hydrodynamic and sediment transport model of San Pablo Bay, California, Nov-Dec 2014
Hydrodynamic and sediment transport data from San Pablo Bay and Grizzly Bay, California, 2019
Sediment transport and aquatic vegetation data from three locations in the Sacramento-San Joaquin Delta, California, 2017 to 2018
Below are multimedia items associated with this project.
Sediment Transport in San Francisco Bay
The Sacramento and San Joaquin Rivers deliver half the amount of sediment they did 50 years ago to San Francisco Bay. Just as sea-level rise is accelerating, the demand for sediment is growing.
USGS scientists from the Pacific Coastal and Marine Science Center explore how sediment moves across San Francisco Bay tidal flats. The research team deploys a suite of large instrumented tripods to record sediment movements over a six-week period in early 2011. Answers from this work will help determine whether deposition of sediment at high tide is occ
USGS scientists from the Pacific Coastal and Marine Science Center explore how sediment moves across San Francisco Bay tidal flats. The research team deploys a suite of large instrumented tripods to record sediment movements over a six-week period in early 2011. Answers from this work will help determine whether deposition of sediment at high tide is occ
Below are publications associated with this project.
Cohesive sediment modeling in a shallow estuary: Model and environmental implications of sediment parameter variation
Numerical models of sediment transport in estuarine systems rely on parameter values that are often poorly constrained and can vary on timescales relevant to model processes. The selection of parameter values can affect the accuracy of model predictions, while environmental variation of these parameters can impact the temporal and spatial ranges of sediment fluxes, erosion, and deposition in the r
Seasonal variation in sediment delivery across the bay-marsh interface of an estuarine salt marsh
Seasonal, spring-neap, and tidal variation in cohesive sediment transport parameters in estuarine shallows
Numerical models for predicting sediment concentrations and transport rely on parameters such as settling velocity and bed erodibility that describe sediment characteristics, yet these parameters are rarely probed directly. We investigated temporal and spatial variation in sediment parameters in the shallows of San Pablo Bay, CA. Flow, turbulence, and suspended sediment data were measured at sites
Measuring settling velocity in a strongly tidal estuary
Predicting sediment transport in estuarine systems requires understanding sediment settling velocity, its range of fluctuations, and the shortcomings of the tools to measure it. Previous studies have used Laser In-Situ Scattering and Transmissometry (LISST) instruments to measure particle size and Acoustic Doppler Velocimeters (ADV) to return estimates of settling velocity. We deployed both instru