Skip to main content
U.S. flag

An official website of the United States government

Barrier Islands

Filter Total Items: 9

USGS DUNEX Operations on the Outer Banks

DUring Nearshore Event eXperiment (DUNEX) is a multi-agency, academic, and non-governmental organization (NGO) collaborative community experiment designed to study nearshore coastal processes during storm events. The experiment began in 2019 and is scheduled for completion in the fall of 2021. USGS participation in DUNEX will contribute new measurements and models that will increase our...
link

USGS DUNEX Operations on the Outer Banks

DUring Nearshore Event eXperiment (DUNEX) is a multi-agency, academic, and non-governmental organization (NGO) collaborative community experiment designed to study nearshore coastal processes during storm events. The experiment began in 2019 and is scheduled for completion in the fall of 2021. USGS participation in DUNEX will contribute new measurements and models that will increase our...
Learn More

Coastal Sediment Availability and Flux (CSAF)

Sediments are the foundation of coastal systems, including barrier islands. Their behavior is driven by not only sediment availability, but also sediment exchanges between barrier island environments. We collect geophysical, remote sensing, and sediment data to estimate these parameters, which are integrated with models to improve prediction of coastal response to extreme storms and sea-level rise...
link

Coastal Sediment Availability and Flux (CSAF)

Sediments are the foundation of coastal systems, including barrier islands. Their behavior is driven by not only sediment availability, but also sediment exchanges between barrier island environments. We collect geophysical, remote sensing, and sediment data to estimate these parameters, which are integrated with models to improve prediction of coastal response to extreme storms and sea-level rise...
Learn More

Coastal System Change at Fire Island, New York

Fire Island is a 50-km long barrier island along the south shore of Long Island, New York. The island is comprised of seventeen year-round communities; federal, state, and county parks; and supports distinct ecosystems alongside areas of economic and cultural value. In addition to providing resources to its residents, the barrier island also protects the heavily-populated mainland from storm waves...
link

Coastal System Change at Fire Island, New York

Fire Island is a 50-km long barrier island along the south shore of Long Island, New York. The island is comprised of seventeen year-round communities; federal, state, and county parks; and supports distinct ecosystems alongside areas of economic and cultural value. In addition to providing resources to its residents, the barrier island also protects the heavily-populated mainland from storm waves...
Learn More

Back-barrier and Estuarine - Coastal System Change at Fire Island, New York

Regional-scale modeling forecasts how atmospheric forcing and oceanographic circulation influence estuarine circulation and water levels, sediment transport, and wetland change.
link

Back-barrier and Estuarine - Coastal System Change at Fire Island, New York

Regional-scale modeling forecasts how atmospheric forcing and oceanographic circulation influence estuarine circulation and water levels, sediment transport, and wetland change.
Learn More

Barrier Island Evolution - Applied Research

Assessments include depiction of trends (the past points to the future), updated observations (topography/bathymetry), and predicted sensitivity of barrier island evolution to possible climatologies and restoration plans.
link

Barrier Island Evolution - Applied Research

Assessments include depiction of trends (the past points to the future), updated observations (topography/bathymetry), and predicted sensitivity of barrier island evolution to possible climatologies and restoration plans.
Learn More

Barrier Island Evolution - Geologic Analysis

Quantifying changes in morphology and sediment distribution over short time scales will demonstrate how geologic variability influences medium-term barrier island response and near-term barrier island trajectories and help to refine sedimentological boundary conditions for morphologic evolution models.
link

Barrier Island Evolution - Geologic Analysis

Quantifying changes in morphology and sediment distribution over short time scales will demonstrate how geologic variability influences medium-term barrier island response and near-term barrier island trajectories and help to refine sedimentological boundary conditions for morphologic evolution models.
Learn More

Barrier Island Comprehensive Monitoring

Historical and newly acquired data were used to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment properties, environmental processes, and vegetation composition.
link

Barrier Island Comprehensive Monitoring

Historical and newly acquired data were used to assess and monitor changes in the aerial and subaqueous extent of islands, habitat types, sediment properties, environmental processes, and vegetation composition.
Learn More

Integrating Mapping and Modeling to Support the Restoration of Bird Nesting Habitat at Breton Island National Wildlife Refuge

In response to storms, reduced sediment supply, and sea-level rise, Breton Island is rapidly deteriorating, impacting the available nesting habitat of endangered seabirds. This study provides critical information regarding the physical environment of the island system.
link

Integrating Mapping and Modeling to Support the Restoration of Bird Nesting Habitat at Breton Island National Wildlife Refuge

In response to storms, reduced sediment supply, and sea-level rise, Breton Island is rapidly deteriorating, impacting the available nesting habitat of endangered seabirds. This study provides critical information regarding the physical environment of the island system.
Learn More

Alabama Barrier Island Restoration Study

Scientists are collecting geologic data and developing a numerical model framework to understand the evolution of Dauphin Island over the last 15-20 years and assess the future evolution of the island over the next 15-50 years, including the impacts of potential restoration scenarios.
link

Alabama Barrier Island Restoration Study

Scientists are collecting geologic data and developing a numerical model framework to understand the evolution of Dauphin Island over the last 15-20 years and assess the future evolution of the island over the next 15-50 years, including the impacts of potential restoration scenarios.
Learn More