The May 18, 1980 eruptive column at Mount St. Helens fluctuated in height through the day, but the eruption subsided by late afternoon. By early May 19, the eruption had stopped. By that time, the ash cloud had spread to the central United States.
Two days later, even though the ash cloud had become more diffuse, fine ash was detected by systems used to monitor air pollution in several cities of the northeastern United States. Some of the ash drifted around the globe within about 2 weeks.
Learn more:
Related Content
How far would ash travel if Yellowstone had a large explosive eruption?
Knowledge about past eruptions of Yellowstone combined with mathematical models of volcanic ash dispersion help scientists determine where and how much ashfall will occur in possible future eruptions. During the three caldera-forming eruptions that occurred between 2.1 million and 640,000 years ago, tiny particles of volcanic ash covered much of the western half of North America. That ash was...
How much ash was there from the May 18, 1980 eruption of Mount St. Helens?
During the 9 hours of vigorous eruptive activity on May 18, 1980, about 540 million tons of ash from Mount St. Helens fell over an area of more than 22,000 square miles (57,000 square kilometers). The total volume of the ash before its compaction by rainfall was about 0.3 cubic mile (1.3 cubic kilometers), equivalent to an area the size of a football field piled about 150 miles (240 kilometers)...
Does ash ever erupt from Kīlauea Volcano?
Kīlauea Volcano is renowned for its relatively benign eruptions of fluid lava flows. Therefore, many people were surprised by the small explosions that occurred in Halema`uma`u Crater in 2008 and 2018, and even more surprised to learn that volcanic ash was being erupted from a new gas vent. However, ash emissions from Halema`uma`u Crater are part of the volcano's legacy. Kīlauea's summit has...
How high was Mount St. Helens before the May 18, 1980 eruption? How high was it after?
Before May 18, 1980, Mount St. Helens' summit altitude of 9,677 feet (2,950 meters) made it only the fifth highest peak in Washington State. It stood out handsomely, however, from surrounding hills because it rose thousands of feet above them and had a perennial cover of ice and snow. The peak rose more than 5,000 feet (1,524 meters) above its base, where the lower flanks merge with adjacent...
How old is Mount St. Helens?
The eruptive history of Mount St. Helens began about 40,000 years ago with dacitic volcanism, which continued intermittently until about 2,500 years ago. This activity included numerous explosive eruptions over periods of hundreds to thousands of years, which were separated by apparent dormant intervals ranging in length from a few hundred to about 15,000 years. The range of rock types erupted by...
How would an eruption of Mount Rainier compare to the 1980 eruption of Mount St. Helens?
Eruptions of Mount Rainier usually produce much less volcanic ash than do eruptions at Mount St. Helens. However, owing to the volcano's great height and widespread cover of snow and glacier ice, eruption triggered debris flows (lahars) at Mount Rainier are likely to be much larger--and will travel a greater distance--than those at Mount St. Helens in 1980. Furthermore, areas at risk from debris...
What is the origin of the name "Mount St. Helens"?
Some Indians of the Pacific Northwest variously called Mount St. Helens 'Louwala-Clough,' or 'smoking mountain.' The modern name, Mount St. Helens, was given to the volcanic peak in 1792 by seafarer and explorer Captain George Vancouver of the British Royal Navy. He named it in honor of fellow countryman Alleyne Fitzherbert, who held the title ‘Baron St. Helens’. Fitzherbert at the time served as...
How many eruptions have there been in the Cascades during the last 4,000 years?
Eruptions in the Cascades have occurred at an average rate of one to two per century during the last 4,000 years. Future eruptions are certain. Learn more: Eruptions in the Cascade Range During the Past 4,000 Years USGS Cascades Volcano Observatory
A 40-year story of river sediment at Mount St. Helens
How would a volcanic eruption affect your Tribe?
Ten ways Mount St. Helens changed our world—The enduring legacy of the 1980 eruption
Field trip guide to Mount St. Helens, Washington—Recent and ancient volcaniclastic processes and deposits
When volcanoes fall down—Catastrophic collapse and debris avalanches
2018 update to the U.S. Geological Survey national volcanic threat assessment
Field-trip guide to Mount St. Helens, Washington - An overview of the eruptive history and petrology, tephra deposits, 1980 pyroclastic density current deposits, and the crater
Mount St. Helens, 1980 to now—what’s going on?
Volcanoes!
Airborne volcanic ash; a global threat to aviation
30 cool facts about Mount St. Helens
Eruptions in the Cascade Range during the past 4,000 years
Related Content
- FAQ
How far would ash travel if Yellowstone had a large explosive eruption?
Knowledge about past eruptions of Yellowstone combined with mathematical models of volcanic ash dispersion help scientists determine where and how much ashfall will occur in possible future eruptions. During the three caldera-forming eruptions that occurred between 2.1 million and 640,000 years ago, tiny particles of volcanic ash covered much of the western half of North America. That ash was...
How much ash was there from the May 18, 1980 eruption of Mount St. Helens?
During the 9 hours of vigorous eruptive activity on May 18, 1980, about 540 million tons of ash from Mount St. Helens fell over an area of more than 22,000 square miles (57,000 square kilometers). The total volume of the ash before its compaction by rainfall was about 0.3 cubic mile (1.3 cubic kilometers), equivalent to an area the size of a football field piled about 150 miles (240 kilometers)...
Does ash ever erupt from Kīlauea Volcano?
Kīlauea Volcano is renowned for its relatively benign eruptions of fluid lava flows. Therefore, many people were surprised by the small explosions that occurred in Halema`uma`u Crater in 2008 and 2018, and even more surprised to learn that volcanic ash was being erupted from a new gas vent. However, ash emissions from Halema`uma`u Crater are part of the volcano's legacy. Kīlauea's summit has...
How high was Mount St. Helens before the May 18, 1980 eruption? How high was it after?
Before May 18, 1980, Mount St. Helens' summit altitude of 9,677 feet (2,950 meters) made it only the fifth highest peak in Washington State. It stood out handsomely, however, from surrounding hills because it rose thousands of feet above them and had a perennial cover of ice and snow. The peak rose more than 5,000 feet (1,524 meters) above its base, where the lower flanks merge with adjacent...
How old is Mount St. Helens?
The eruptive history of Mount St. Helens began about 40,000 years ago with dacitic volcanism, which continued intermittently until about 2,500 years ago. This activity included numerous explosive eruptions over periods of hundreds to thousands of years, which were separated by apparent dormant intervals ranging in length from a few hundred to about 15,000 years. The range of rock types erupted by...
How would an eruption of Mount Rainier compare to the 1980 eruption of Mount St. Helens?
Eruptions of Mount Rainier usually produce much less volcanic ash than do eruptions at Mount St. Helens. However, owing to the volcano's great height and widespread cover of snow and glacier ice, eruption triggered debris flows (lahars) at Mount Rainier are likely to be much larger--and will travel a greater distance--than those at Mount St. Helens in 1980. Furthermore, areas at risk from debris...
What is the origin of the name "Mount St. Helens"?
Some Indians of the Pacific Northwest variously called Mount St. Helens 'Louwala-Clough,' or 'smoking mountain.' The modern name, Mount St. Helens, was given to the volcanic peak in 1792 by seafarer and explorer Captain George Vancouver of the British Royal Navy. He named it in honor of fellow countryman Alleyne Fitzherbert, who held the title ‘Baron St. Helens’. Fitzherbert at the time served as...
How many eruptions have there been in the Cascades during the last 4,000 years?
Eruptions in the Cascades have occurred at an average rate of one to two per century during the last 4,000 years. Future eruptions are certain. Learn more: Eruptions in the Cascade Range During the Past 4,000 Years USGS Cascades Volcano Observatory
- Multimedia
- Publications
Filter Total Items: 22
A 40-year story of river sediment at Mount St. Helens
The 1980 eruption of Mount St. Helens in Washington State unleashed one of the largest debris avalanches (landslide) in recorded history. The debris avalanche deposited 3.3 billion cubic yards of material into the upper North Fork Toutle River watershed and obstructed the Columbia River shipping channel downstream. From the eruption on May 18, 1980, to September 30, 2018, the Toutle River transporAuthorsMark A. Uhrich, Kurt R. Spicer, Adam R. Mosbrucker, Dennis R. Saunders, Tami S. ChristiansonHow would a volcanic eruption affect your Tribe?
Volcanic eruptions are rare, but when they occur, they can profoundly affect nearby communities. In order to determine which communities are at risk, and in order for those communities to mitigate their risk, communities need to know whether they are in or near volcano hazard zones and have basic information about the hazards within those zones. In addition, individuals need to know whether they lAuthorsCynthia A. Gardner, Joseph A. BardTen ways Mount St. Helens changed our world—The enduring legacy of the 1980 eruption
Mount St. Helens was once enjoyed for its serene beauty and was considered one of America’s most majestic volcanoes because of its perfect cone shape, similar to Japan’s beloved Mount Fuji. Nearby residents assumed that the mountain was solid and enduring. That perception changed during the early spring of 1980. Then, on May 18, 1980, following 2 months of earthquakes and small explosions, the volAuthorsCarolyn L. Driedger, Jon J. Major, John S. Pallister, Michael A. Clynne, Seth C. Moran, Elizabeth G. Westby, John W. EwertField trip guide to Mount St. Helens, Washington—Recent and ancient volcaniclastic processes and deposits
This field guide explores volcanic effusions, sediments, and landforms at Mount St. Helens in Washington. A detailed synopsis outlines the eruptive history of Mount St. Helens from about 300,000 years ago through 1980 and beyond.The five days in the field include about 28 stops and 12 potential stops. Exposures in valleys surrounding Mount St. Helens reveal records of diverse Pleistocene and HolocAuthorsRichard B. Waitt, Jon J. Major, Richard P. Hoblitt, Alexa R. Van Eaton, Michael A. ClynneWhen volcanoes fall down—Catastrophic collapse and debris avalanches
Despite their seeming permanence, volcanoes are prone to catastrophic collapse that can affect vast areas in a matter of minutes. Large collapses begin as gigantic landslides that quickly transform to debris avalanches—chaotically tumbling masses of rock debris that can sweep downslope at extremely high velocities, inundating areas far beyond the volcano. Rapid burial by the debris avalanches themAuthorsLee Siebert, Mark E. Reid, James W. Vallance, Thomas C. Pierson2018 update to the U.S. Geological Survey national volcanic threat assessment
When erupting, all volcanoes pose a degree of risk to people and infrastructure, however, the risks are not equivalent from one volcano to another because of differences in eruptive style and geographic location. Assessing the relative threats posed by U.S. volcanoes identifies which volcanoes warrant the greatest risk-mitigation efforts by the U.S. Geological Survey and its partners. This updateAuthorsJohn W. Ewert, Angela K. Diefenbach, David W. RamseyField-trip guide to Mount St. Helens, Washington - An overview of the eruptive history and petrology, tephra deposits, 1980 pyroclastic density current deposits, and the crater
This field trip will provide an introduction to several fascinating features of Mount St. Helens. The trip begins with a rigorous hike of about 15 km from the Johnston Ridge Observatory (9 km north-northeast of the crater vent), across the 1980 Pumice Plain, to Windy Ridge (3.6 km northeast of the crater vent) to examine features that document the dynamics and progressive emplacement of pyroclastiAuthorsJohn S. Pallister, Michael A. Clynne, Heather M. Wright, Alexa R. Van Eaton, James W. Vallance, David R. Sherrod, B. Peter KokelaarMount St. Helens, 1980 to now—what’s going on?
Mount St. Helens seized the world’s attention in 1980 when the largest historical landslide on Earth and a powerful explosive eruption reshaped the volcano, created its distinctive crater, and dramatically modified the surrounding landscape. An enormous lava dome grew episodically in the crater until 1986, when the volcano became relatively quiet. A new glacier grew in the crater, wrapping aroundAuthorsDaniel Dzurisin, Carolyn L. Driedger, Lisa M. FaustVolcanoes!
Volcanoes is an interdisciplinary set of materials for grades 4-8. Through the story of the 1980 eruption of Mount St. Helens, students will answer fundamental questions about volcanoes: "What is a volcano?" "Where do volcanoes occur and why?" "What are the effects of volcanoes on the Earth system?" "What are the risks and the benefits of living near volcanoes?" "Can scientists forecast volcanic eAuthorsAirborne volcanic ash; a global threat to aviation
The world's busy air traffic corridors pass over or downwind of hundreds of volcanoes capable of hazardous explosive eruptions. The risk to aviation from volcanic activity is significant - in the United States alone, aircraft carry about 300,000 passengers and hundreds of millions of dollars of cargo near active volcanoes each day. Costly disruption of flight operations in Europe and North AmericaAuthorsChristina A. Neal, Marianne C. Guffanti30 cool facts about Mount St. Helens
Commemorating the 30th anniversary of the 1980 eruptions of Mount St. Helens.AuthorsCarolyn Driedger, Westby Liz, Lisa Faust, Peter Frenzen, Jeanne Bennett, Michael ClynneEruptions in the Cascade Range during the past 4,000 years
Volcanoes have been erupting in the Cascade Range for over 500,000 years. During the past 4,000 years eruptions have occurred at an average rate of about 2 per century. This chart shows 13 volcanoes on a map of Washington, Oregon, and northern California and time lines for each showing the ages of their eruptions.AuthorsBobbie Myers, Carolyn L. Driedger - News