There are many “natural” and “anthropogenic” (human-induced) factors that contribute to climate change. Climate change has always happened on Earth, which is clearly seen in the geological record; it is the rapid rate and the magnitude of climate change occurring now that is of great concern worldwide. Greenhouse gases in the atmosphere absorb heat radiation. Human activity has increased greenhouse gases in the atmosphere since the Industrial Revolution, leading to more heat retention and an increase in surface temperatures. Atmospheric aerosols alter climate by scattering and absorbing solar and infrared radiation and they may also change the microphysical and chemical properties of clouds. Finally, land-use changes, such as deforestation have led to changes in the amount of sunlight reflected from the ground back into space (the surface albedo).
Related Content
What are the long-term effects of climate change?
Scientists have predicted that long-term effects of climate change will include a decrease in sea ice and an increase in permafrost thawing, an increase in heat waves and heavy precipitation, and decreased water resources in semi-arid regions. Below are some of the regional impacts of global change forecast by the Intergovernmental Panel on Climate Change: North America: Decreasing snowpack in the...
What is the difference between weather and climate change?
Weather refers to short term atmospheric conditions while climate is the weather of a specific region averaged over a long period of time. Climate change refers to long-term changes.
How can climate change affect natural disasters?
With increasing global surface temperatures the possibility of more droughts and increased intensity of storms will likely occur. As more water vapor is evaporated into the atmosphere it becomes fuel for more powerful storms to develop. More heat in the atmosphere and warmer ocean surface temperatures can lead to increased wind speeds in tropical storms. Rising sea levels expose higher locations...
How do changes in climate and land use relate to one another?
The link between land use and the climate is complex. First, land cover--as shaped by land use practices--affects the global concentration of greenhouse gases. Second, while land use change is an important driver of climate change, a changing climate can lead to changes in land use and land cover. For example, farmers might shift from their customary crops to crops that will have higher economic...
How do we know the climate is changing?
The scientific community is certain that the Earth's climate is changing because of the trends that we see in the instrumented climate record and the changes that have been observed in physical and biological systems. The instrumental record of climate change is derived from thousands of temperature and precipitation recording stations around the world. We have very high confidence in these...
What are some of the signs of climate change?
• Temperatures are rising world-wide due to greenhouse gases trapping more heat in the atmosphere.• Droughts are becoming longer and more extreme around the world.• Tropical storms becoming more severe due to warmer ocean water temperatures.• As temperatures rise there is less snowpack in mountain ranges and polar areas and the snow melts faster.• Overall, glaciers are melting at a faster rate.•...
Does the USGS monitor global warming?
Not specifically. Our charge is to understand characteristics of the Earth, especially the Earth's surface, that affect our Nation's land, water, and biological resources. That includes quite a bit of environmental monitoring. Other agencies, especially NOAA and NASA, are specifically funded to monitor global temperature and atmospheric phenomena such as ozone concentrations. The work through...
Will global warming produce more frequent and more intense wildfires?
There isn’t a direct relationship between climate change and fire, but researchers have found strong correlations between warm summer temperatures and large fire years, so there is general consensus that fire occurrence will increase with climate change.Hot, dry conditions, however, do not automatically mean fire—something needs to create the spark and actually start the fire. In some parts of the...
Has the USGS made any Biologic Carbon Sequestration assessments?
The USGS is congressionally mandated (2007 Energy Independence and Security Act) to conduct a comprehensive national assessment of storage and flux (flow) of carbon and the fluxes of other greenhouse gases (including carbon dioxide) in ecosystems. At this writing, reports have been completed for Alaska, the Eastern U.S., the Great Plains, and the Western U.S. Learn more: Land Change Science...
How does carbon get into the atmosphere?
Atmospheric carbon dioxide comes from two primary sources—natural and human activities. Natural sources of carbon dioxide include most animals, which exhale carbon dioxide as a waste product. Human activities that lead to carbon dioxide emissions come primarily from energy production, including burning coal, oil, or natural gas.Learn more: Sources of Greenhouse Gas Emissions (EPA)
How much carbon dioxide can the United States store via geologic sequestration?
In 2013, the USGS released the first-ever comprehensive, nation-wide assessment of geologic carbon sequestration, which estimates a mean storage potential of 3,000 metric gigatons of carbon dioxide. The assessment is the first geologically-based, probabilistic assessment, with a range of 2,400 to 3,700 metric gigatons of potential carbon dioxide storage. In addition, the assessment is for the...
How much carbon dioxide does the United States and the World emit each year from energy sources?
The U.S. Energy Information Administration estimates that in 2019, the United States emitted 5,130 million metric tons of energy-related carbon dioxide, while the global emissions of energy-related carbon dioxide totaled 33,621.5 million metric tons.
Monitoring and assessing urban heat island variations and effects in the United States
Using information from global climate models to inform policymaking—The role of the U.S. Geological Survey
Changing Arctic Ecosystems: Updated forecast: Reducing carbon dioxide (CO2) emissions required to improve polar bear outlook
Climate change: evaluating your local and regional water resources
Landsat Surface Reflectance Climate Data Records
U.S. Geological Survey Climate and Land Use Change Science Strategy—A Framework for Understanding and Responding to Global Change
Consequences of land use and land cover change
Changing Arctic ecosystems - measuring and forecasting the response of Alaska's terrestrial ecosystem to a warming climate
Polar bear and walrus response to the rapid decline in Arctic sea ice
The concept of geologic carbon sequestration
Assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios
Related Content
- FAQ
What are the long-term effects of climate change?
Scientists have predicted that long-term effects of climate change will include a decrease in sea ice and an increase in permafrost thawing, an increase in heat waves and heavy precipitation, and decreased water resources in semi-arid regions. Below are some of the regional impacts of global change forecast by the Intergovernmental Panel on Climate Change: North America: Decreasing snowpack in the...
What is the difference between weather and climate change?
Weather refers to short term atmospheric conditions while climate is the weather of a specific region averaged over a long period of time. Climate change refers to long-term changes.
How can climate change affect natural disasters?
With increasing global surface temperatures the possibility of more droughts and increased intensity of storms will likely occur. As more water vapor is evaporated into the atmosphere it becomes fuel for more powerful storms to develop. More heat in the atmosphere and warmer ocean surface temperatures can lead to increased wind speeds in tropical storms. Rising sea levels expose higher locations...
How do changes in climate and land use relate to one another?
The link between land use and the climate is complex. First, land cover--as shaped by land use practices--affects the global concentration of greenhouse gases. Second, while land use change is an important driver of climate change, a changing climate can lead to changes in land use and land cover. For example, farmers might shift from their customary crops to crops that will have higher economic...
How do we know the climate is changing?
The scientific community is certain that the Earth's climate is changing because of the trends that we see in the instrumented climate record and the changes that have been observed in physical and biological systems. The instrumental record of climate change is derived from thousands of temperature and precipitation recording stations around the world. We have very high confidence in these...
What are some of the signs of climate change?
• Temperatures are rising world-wide due to greenhouse gases trapping more heat in the atmosphere.• Droughts are becoming longer and more extreme around the world.• Tropical storms becoming more severe due to warmer ocean water temperatures.• As temperatures rise there is less snowpack in mountain ranges and polar areas and the snow melts faster.• Overall, glaciers are melting at a faster rate.•...
Does the USGS monitor global warming?
Not specifically. Our charge is to understand characteristics of the Earth, especially the Earth's surface, that affect our Nation's land, water, and biological resources. That includes quite a bit of environmental monitoring. Other agencies, especially NOAA and NASA, are specifically funded to monitor global temperature and atmospheric phenomena such as ozone concentrations. The work through...
Will global warming produce more frequent and more intense wildfires?
There isn’t a direct relationship between climate change and fire, but researchers have found strong correlations between warm summer temperatures and large fire years, so there is general consensus that fire occurrence will increase with climate change.Hot, dry conditions, however, do not automatically mean fire—something needs to create the spark and actually start the fire. In some parts of the...
Has the USGS made any Biologic Carbon Sequestration assessments?
The USGS is congressionally mandated (2007 Energy Independence and Security Act) to conduct a comprehensive national assessment of storage and flux (flow) of carbon and the fluxes of other greenhouse gases (including carbon dioxide) in ecosystems. At this writing, reports have been completed for Alaska, the Eastern U.S., the Great Plains, and the Western U.S. Learn more: Land Change Science...
How does carbon get into the atmosphere?
Atmospheric carbon dioxide comes from two primary sources—natural and human activities. Natural sources of carbon dioxide include most animals, which exhale carbon dioxide as a waste product. Human activities that lead to carbon dioxide emissions come primarily from energy production, including burning coal, oil, or natural gas.Learn more: Sources of Greenhouse Gas Emissions (EPA)
How much carbon dioxide can the United States store via geologic sequestration?
In 2013, the USGS released the first-ever comprehensive, nation-wide assessment of geologic carbon sequestration, which estimates a mean storage potential of 3,000 metric gigatons of carbon dioxide. The assessment is the first geologically-based, probabilistic assessment, with a range of 2,400 to 3,700 metric gigatons of potential carbon dioxide storage. In addition, the assessment is for the...
How much carbon dioxide does the United States and the World emit each year from energy sources?
The U.S. Energy Information Administration estimates that in 2019, the United States emitted 5,130 million metric tons of energy-related carbon dioxide, while the global emissions of energy-related carbon dioxide totaled 33,621.5 million metric tons.
- Multimedia
- Publications
Monitoring and assessing urban heat island variations and effects in the United States
Landsat surface temperature and land cover products have been used to estimate surface temperatures in urban and surrounding nonurban areas and to quantify urban heat island intensity. Understanding the intensity and long-term temporal trends of urban heat islands enables the heat-related health challenges associated with heat waves to be monitored and the effects for human health and ecosystems tAuthorsGeorge XianUsing information from global climate models to inform policymaking—The role of the U.S. Geological Survey
This report provides an overview of model-based climate science in a risk management context. In addition, it summarizes how the U.S. Geological Survey (USGS) will continue to follow best scientific practices and when and how the results of this research will be delivered to the U.S. Department of the Interior (DOI) and other stakeholders to inform policymaking. Climate change is a risk managementAuthorsAdam Terando, David Reidmiller, Steven W. Hostetler, Jeremy S. Littell, T. Douglas Beard, Sarah R. Weiskopf, Jayne Belnap, Geoffrey S. PlumleeChanging Arctic Ecosystems: Updated forecast: Reducing carbon dioxide (CO2) emissions required to improve polar bear outlook
The Arctic is warming faster than other regions of the world due to the loss of snow and ice, which increases the amount of solar energy absorbed by the region. The most visible consequence has been the rapid decline in sea ice over the last 3 decades-a decline projected to bring long ice-free summers if greenhouse gas (GHG) emissions are not significantly reduced. The polar bear (Ursus maritimus)AuthorsKaren L. Oakley, Todd C. Atwood, Douglas N. Mugel, Karyn D. Rode, Mary E. WhalenClimate change: evaluating your local and regional water resources
The BCM is a fine-scale hydrologic model that uses detailed maps of soils, geology, topography, and transient monthly or daily maps of potential evapotranspiration, air temperature, and precipitation to generate maps of recharge, runoff, snow pack, actual evapotranspiration, and climatic water deficit. With these comprehensive environmental inputs and experienced scientific analysis, the BCM proviAuthorsLorraine E. Flint, Alan L. Flint, James H. ThorneLandsat Surface Reflectance Climate Data Records
Landsat Surface Reflectance Climate Data Records (CDRs) are high level Landsat data products that support land surface change studies. Climate Data Records, as defined by the National Research Council, are a time series of measurements with sufficient length, consistency, and continuity to identify climate variability and change. The U.S. Geological Survey (USGS) is using the valuable 40-year LandAuthorsU.S. Geological Survey Climate and Land Use Change Science Strategy—A Framework for Understanding and Responding to Global Change
Executive SummaryThe U.S. Geological Survey (USGS), a nonregulatory Federal science agency with national scope and responsibilities, is uniquely positioned to serve the Nation’s needs in understanding and responding to global change, including changes in climate, water availability, sea level, land use and land cover, ecosystems, and global biogeochemical cycles. Global change is among the most chAuthorsVirginia R. Burkett, David A. Kirtland, Ione L. Taylor, Jayne Belnap, Thomas M. Cronin, Michael D. Dettinger, Eldrich L. Frazier, John W. Haines, Thomas R. Loveland, Paul C.D. Milly, Robin O'Malley, Robert S. Thompson, Alec G. Maule, Gerard McMahon, Robert G. StrieglConsequences of land use and land cover change
The U.S. Geological Survey (USGS) Climate and Land Use Change Mission Area is one of seven USGS mission areas that focuses on making substantial scientific "...contributions to understanding how Earth systems interact, respond to, and cause global change". Using satellite and other remotely sensed data, USGS scientists monitor patterns of land cover change over space and time at regional, nationalAuthorsE. Terrence Slonecker, Christopher Barnes, Krista Karstensen, Lesley E. Milheim, Coral M. Roig-SilvaChanging Arctic ecosystems - measuring and forecasting the response of Alaska's terrestrial ecosystem to a warming climate
The Arctic Coastal Plain of northern Alaska is a complex landscape of lakes, streams, and wetlands scattered across low relief tundra that is underlain by permafrost. This region of the Arctic has experienced a warming trend over the past three decades, leading to thawing of on-shore permafrost and the disappearance of sea ice at an unprecedented rate. The loss of sea ice has increased ocean waveAuthorsJohn M. Pearce, Anthony R. DeGange, Paul L. Flint, Tom F. Fondell, David D. Gustine, Leslie E. Holland-Bartels, Andrew G. Hope, Jerry W. Hupp, Joshua C. Koch, Joel A. Schmutz, Sandra L. Talbot, David H. Ward, Mary E. WhalenPolar bear and walrus response to the rapid decline in Arctic sea ice
The Arctic is warming faster than other regions of the world due to positive climate feedbacks associated with loss of snow and ice. One highly visible consequence has been a rapid decline in Arctic sea ice over the past 3 decades - a decline projected to continue and result in ice-free summers likely as soon as 2030. The polar bear (Ursus maritimus) and the Pacific walrus (Odobenus rosmarus diverAuthorsKaren L. Oakley, Mary E. Whalen, David C. Douglas, Mark S. Udevitz, Todd C. Atwood, C. JayThe concept of geologic carbon sequestration
No abstract available.AuthorsDouglas W. Duncan, Eric A. MorrisseyAssessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios
The Energy Independence and Security Act of 2007 (EISA) requires the U.S. Department of the Interior (DOI) to develop a methodology and conduct an assessment of carbon storage, carbon sequestration, and greenhouse-gas (GHG) fluxes in the Nation's ecosystems. The U.S. Geological Survey (USGS) has developed and published the methodology (U.S. Geological Survey Scientific Investigations Report 2010-5AuthorsZhi-Liang Zhu, Sarah Stackpoole - News