This list of Water Resources Mission Area publications includes both official USGS publications and journal articles authored by our scientists. A searchable database of all USGS publications can be accessed at the USGS Publications Warehouse.
Filter Total Items: 18157
Groundwater flow model investigation of the vulnerability of water resources at Chaco Culture National Historical Park related to unconventional oil and gas development
Chaco Culture National Historical Park (CCNHP), located in northwestern New Mexico, protects the greatest concentration of Chacoan historical sites in the American Southwest. Geologically, CCNHP is located within the San Juan structural basin, which consists in part of complex Cretaceous stratigraphy and hosts a variety of energy resources. As part of a larger study to investigate the vulnerabilit
Authors
Zachary M. Shephard, Andre B. Ritchie, Benjamin S. Linhoff, John Joseph Lunzer
New England Water Science Center—Bringing quality and reliable water science to New England
The U.S. Geological Survey (USGS) New England Water Science Center provides timely and reliable information to Federal, State, Tribal, and local stakeholders on the water resources of Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. This information product broadly describes the center’s research priorities and monitoring network and how its work benefits the public and
Authors
Katrina Rossos
Sediment sources and connectivity linked to hydrologic pathways and geomorphic processes: A conceptual model to specify sediment sources and pathways through space and time
Sediment connectivity is a conceptualization for the transfer and storage of sediment among different geomorphic compartments across upland landscapes and channel networks. Sediment connectivity and dysconnectivity are linked to the water cycle and hydrologic systems with the associated multiscale interactions with climate, soil, topography, ecology, and landuse/landcover under natural variability
Authors
Se Jong Cho, Diana Karwan, Katherine Skalak, James Pizzuto, Max Huffman
Updates to the regional groundwater-flow model of the New Jersey Coastal Plain, 1980–2013
A 21-layer three-dimensional transient groundwater-flow model of the New Jersey Coastal Plain was developed and calibrated by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection to simulate groundwater-flow conditions during 1980–2013, incorporating average annual groundwater withdrawals and average annual groundwater recharge. This model is
Authors
Alison D. Gordon, Glen B. Carleton
Assessment of post-wildfire geomorphic change in the North Fork Eagle Creek stream channel, New Mexico, 2017–21
The 2012 Little Bear Fire caused substantial vegetation loss in the Eagle Creek Basin of south-central New Mexico. This loss was expected to alter the localized hydrologic response to precipitation by creating conditions that amplify surface runoff, which might alter the geomorphology of North Fork Eagle Creek, a major tributary to Eagle Creek. To monitor short-term geomorphic change, annual geomo
Authors
Justin R. Nichols, Shaleene B. Chavarria, Alexander P. Graziano
Determination and prediction of micro scale rare earth element geochemical associations in mine drainage treatment wastes
Acid mine drainage (AMD) has been proposed as a novel source of rare earth elements (REE), a group of elements that includes critical metals for clean energy and modern technologies. REE are sequestered in the Fe–Al–Mn-rich precipitates produced during the treatment of AMD. These AMD solids are typically managed as waste but could be a REE source. Here, results from AMD solids characterization and
Authors
Benjamin C. Hedin, Mengling Y. Stuckman, Charles A. Cravotta, Christina L. Lopano, Rosemary C. Capo
Characterizing performance of freshwater wetland methane models across time scales at FLUXNET-CH4 sites using wavelet analyses
Process-based land surface models are important tools for estimating global wetland methane (CH4) emissions and projecting their behavior across space and time. So far there are no performance assessments of model responses to drivers at multiple time scales. In this study, we apply wavelet analysis to identify the dominant time scales contributing to model uncertainty in the frequency domain. We
Authors
Zhen Zhang, Sheel Bansal, Kuang-Yu Chang, Etienne Fluet-Chouinard, Kyle B. Delwiche, Mathias Goeckede, Adrian Gustafson, Sara Knox, Antii Leppanen, Licheng Liu, Jinxun Liu, Avni Malhotra, Tiina Markkanen, Gavin McNicol, Joe R. Melton, Paul A Miller, Changhui Peng, Maarit Raivonen, William Riley, Oliver Sonnentag, Tuula Aalto, Rodrigo Vargas, Wenxin Zhang, Qing Zhu, Qiuan Zhu, Qianlai Zhuang, Lisamarie Windham-Myers, Robert B. Jackson, Benjamin Poulter
Predicting daily river chlorophyll concentrations at a continental scale
Eutrophication is one of the largest threats to aquatic ecosystems and chlorophyll a measurements are relevant indicators of trophic state and algal abundance. Many studies have modeled chlorophyll a in rivers but model development and testing has largely occurred at individual sites which hampers creating generalized models capable of making broad-scale predictions. To address this gap, we compil
Authors
Philip Robert Savoy, Judson Harvey
Development of the North Carolina stormwater-treatment decision-support system by using the Stochastic Empirical Loading and Dilution Model (SELDM)
The Federal Highway Administration and State departments of transportation nationwide need an efficient method to assess potential adverse effects of highway stormwater runoff on receiving waters to optimize stormwater-treatment decisions. To this end, the U.S. Geological Survey, in cooperation with the Federal Highway Administration and the North Carolina Department of Transportation (NCDOT), dev
Authors
Gregory E. Granato, Charles C. Stillwell, J. Curtis Weaver, Andrew H. McDaniel, Brian S. Lipscomb, Susan C. Jones, Ryan M. Mullins
Thirty years of regional groundwater-quality trend studies in the United States: Major findings and lessons learned
Changes in groundwater quality have been evaluated for more than 2,200 wells in 25 Principal Aquifers in the United States based on repeated decadal sampling (once every 10 years) from 1988 to 2021. The purpose of this study is to identify contaminants with changing concentrations, the locations and magnitude of those changes, the factors driving those changes, the obstacles to interpreting the ch
Authors
Bruce D. Lindsey, Brandon J. Fleming, Phillip J. Goodling, Amanda Nicole May
Growth of coal mining operations in the Elk River Valley (Canada) linked to increasing solute transport of Se, NO3-, and SO42- into the transboundary Koocanusa Reservoir (USA-Canada)
Koocanusa Reservoir (KOC) is a waterbody that spans the United States (U.S.) and Canadian border. Increasing concentrations of total selenium (Se), nitrate + nitrite (NO3–, nitrite is insignificant or not present), and sulfate (SO42–) in KOC and downstream in the Kootenai River (Kootenay River in Canada) are tied to expanding coal mining operations in the Elk River Watershed, Canada. Using a paire
Authors
Meryl Biesiot Storb, Ashley Morgan Bussell, Sara L. Caldwell Eldridge, Robert M. Hirsch, Travis S. Schmidt
Geophysical logging For hydrogeology
Geophysical logging is the measurement and analysis of electrical, acoustic, nuclear, and other physical properties in a borehole using wireline or direct push technology. Geophysical logging is one of the primary methods of collecting subsurface information for hydrogeologic investigations. Groundwater scientists and engineers should have a basic understanding of borehole geophysics and how it is
Authors
John H. Williams, Frederick L. Paillet