Skip to main content
U.S. flag

An official website of the United States government

Publications

This list of Water Resources Mission Area publications includes both official USGS publications and journal articles authored by our scientists. A searchable database of all USGS publications can be accessed at the USGS Publications Warehouse.

Filter Total Items: 17744

Linear regression model documentation for computing water-quality constituent concentrations or densities using continuous real-time water-quality data for the Kansas River above Topeka Weir at Topeka, Kansas, November 2018 through June 2021

The Kansas River and its associated alluvial aquifer provide drinking water to more than 950,000 people in northeastern Kansas. Water suppliers that rely on the Kansas River as a water-supply source use physical and chemical processes to treat and remove contaminants before public distribution. An early-notification system of changing water-quality conditions allows water suppliers to proactively

Interaction of a legacy groundwater contaminant plume with the Little Wind River from 2015 through 2017, Riverton Processing site, Wyoming

The Riverton Processing site was a uranium mill 4 kilometers southwest of Riverton, Wyoming, that prepared uranium ore for nuclear reactors and weapons from 1958 to 1963. The U.S. Department of Energy completed surface remediation of the uranium tailings in 1989; however, groundwater below and downgradient from the tailings site and nearby Little Wind River was not remediated. Beginning in 2010, a

Assessment of habitat use by juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Willamette River Basin, 2020–21

We conducted a field study during 2020–21 to describe habitat use patterns of juvenile Chinook salmon (Oncorhynchus tshawytscha) in the mainstem Willamette, McKenzie, and Santiam Rivers and to evaluate how habitat suitability criteria affected the predictive accuracy of a hydraulic habitat model. Two approaches were used to collect habitat use data: a stratified sampling design was used to ensure

Simulation of regional groundwater flow and advective transport of per- and polyfluoroalkyl substances, Joint Base McGuire-Dix-Lakehurst and vicinity, New Jersey, 2018

A three-dimensional numerical model of groundwater flow was developed and calibrated for the unconsolidated New Jersey Coastal Plain aquifers underlying Joint Base McGuire-Dix-Lakehurst (JBMDL) and vicinity, New Jersey, to evaluate groundwater flow pathways of per- and polyfluoroalkyl substances (PFAS) contamination associated with use of aqueous film forming foam (AFFF) at the base. The regional

Sampling and analysis plan for the Koocanusa Reservoir and upper Kootenai River, Montana, water-quality monitoring program, 2021

In 2021, the U.S. Geological Survey will collect water-quality samples and environmental data from 3 sites in Koocanusa Reservoir and from 1 site in the Kootenai River. The transboundary Koocanusa Reservoir is in southeastern British Columbia, Canada, and northwestern Montana, United States, and was formed with the construction of Libby Dam on the Kootenai River 26 kilometers upstream from Libby,

Survey of fish communities in tributaries to the Mohawk River, New York, 2019

Fish communities of the Mohawk River and associated sections of the New York State Canal System have been well documented but little information is available regarding the status of fish communities in the extensive network of tributaries that feed the Mohawk River. This lack of information is problematic because changes in species distributions or general ecosystem health may go unnoticed in the

A global perspective on bacterial diversity in the terrestrial deep subsurface

While recent efforts to catalogue Earth’s microbial diversity have focused upon surface and marine habitats, 12–20 % of Earth’s biomass is suggested to exist in the terrestrial deep subsurface, compared to ~1.8 % in the deep subseafloor. Metagenomic studies of the terrestrial deep subsurface have yielded a trove of divergent and functionally important microbiomes from a range of localities. Howeve

Nitrogen-15 NMR study on the incorporation of nitrogen into aquatic NOM upon chloramination

Chloramination is being used increasingly in water treatment to lower the formation of regulated disinfection byproducts (DBPs). How monochloramine nitrogen becomes incorporated into aquatic natural organic matter (NOM) and potentially affects the formation of nitrogenous DBPs is an unresolved question in the chemistry of humic substances. To address the problem, Suwannee River NOM and Suwannee Ri

Water Science School [Bookmark]

Introduction The U.S. Geological Survey’s online Water Science School is a one-stop shop for water education resources. In addition to sharing images, data, and diagrams, the Water Science School provides lesson plans for teachers as well as multiple interactive activities for students, such as questionnaires, calculators, and quizzes. This bookmark introduces Drippy, the Water Science School masc

Incorporating temperature into seepage loss estimates for a large unlined irrigation canal

Quantifying seepage losses from unlined irrigation canals is necessary to improve water use and conservation. The use of heat as a tracer is widely used in quantifying seepage rates across the sediment–water interface. In this study, field observations and two-dimensional numerical models were used to simulate seepage losses during the 2018 and 2019 irrigation season in the Truckee Canal system. N

Moving Aircraft River Velocimetry (MARV): Framework and proof-of-concept on the Tanana River

Information on velocity fields in rivers is critical for designing infrastructure, modeling contaminant transport, and assessing habitat. Although non-contact approaches to measuring flow velocity are well established, these methods assume a stationary imaging platform. This study eliminates this constraint by introducing a framework for moving aircraft river velocimetry (MARV). The workflow takes

Juxtaposition of intensive agriculture, vulnerable aquifers, and mixed chemical/microbial exposures in private-well tapwater in northeast Iowa

In the United States and globally, contaminant exposure in unregulated private-well point-of-use tapwater (TW) is a recognized public-health data gap and an obstacle to both risk-management and homeowner decision making. To help address the lack of data on broad contaminant exposures in private-well TW from hydrologically-vulnerable (alluvial, karst) aquifers in agriculturally-intensive landscapes