Skip to main content
U.S. flag

An official website of the United States government


This list of Water Resources Mission Area publications includes both official USGS publications and journal articles authored by our scientists. A searchable database of all USGS publications can be accessed at the USGS Publications Warehouse.

Filter Total Items: 17406

Characterization of the partial oxidation products of crude oil contaminating groundwater at the U.S. Geological Survey Bemidji research site in Minnesota by elemental analysis, radiocarbon dating, nuclear magnetic resonance spectroscopy, and Fourier tran

In oil spill research, a topic of increasing attention during the last decade has been the environmental impact of the partial oxidation products that result from transformation of the petroleum in freshwater, marine, and terrestrial ecosystems. This report describes the isolation and characterization of the partial oxidation products from crude oil contaminating groundwater at the long-term U.S.

Using microbial source tracking to identify fecal contamination sources in Great South Bay on Long Island, New York

The U.S. Geological Survey worked in cooperation with the New York State Department of Environmental Conservation to assess the potential sources of fecal contamination entering a part of Great South Bay (referred to as Great South Bay for the purposes of this report) near the hamlets of West Sayville, Sayville, and Bayport on the southern shore of Suffolk County on Long Island, New York. Water sa

Evaluating the use of video cameras to estimate bridge scour potential at four bridges in southwestern Montana

The U.S. Geological Survey, in cooperation with the Montana Department of Transportation, installed cameras and large-scale particle image velocimetry (LSPIV) recording equipment at four sites where the U.S. Geological Survey and Montana Department of Transportation are monitoring bridge scour using other methods. Determination of stream velocities is an important component of hydraulic engineerin

Application of a soil-water-balance model to estimate annual groundwater recharge for Long Island, New York, 1900–2019

A soil-water-balance (SWB) model was developed for Long Island, New York, to estimate the potential amount of annual groundwater recharge to the Long Island aquifer system from 1900 to 2019. The SWB model program is a computer code based on a modified Thornthwaite-Mather SWB approach and uses spatially and temporally distributed meteorological, land-cover, and soil properties as input to compute p

Quantifying relations between altered hydrology and fish community responses for streams in Minnesota

Altered hydrology is a stressor on aquatic life for several streams in Minnesota, but quantitative relations between specific aspects of streamflow alteration and biological responses have not been developed on a statewide scale in Minnesota. Best subsets regression analysis was used to develop linear regression models that quantify relations among five categories of hydrologic explanatory metric

Spectral mixture analysis for surveillance of harmful algal blooms (SMASH): A field-, laboratory-, and satellite-based approach to identifying cyanobacteria genera from remotely sensed data

Algal blooms around the world are increasing in frequency and severity, often with the possibility of adverse effects on human and ecosystem health. The health and economic impacts associated with harmful algal blooms, or HABs, provide compelling rationale for developing new methods for monitoring these events via remote sensing. Although concentrations of chlorophyll-a and key pigments like phyco

Assessment of mercury in sediments and waters of Grubers Grove Bay, Wisconsin

Mercury is a global contaminant that can be detrimental to wildlife and human health. Anthropogenic emissions and point sources are primarily responsible for elevated mercury concentrations in sediments and waters. Mercury can physically move and chemically transform in the environment, resulting in biomagnification of mercury, in the form of methylmercury, in the food web and causing elevated mer

Addressing stakeholder science needs for integrated drought science in the Colorado River Basin

Stakeholders need scientific data, analysis, and predictions of how drought the will impact the Colorado River Basin in a format that is continuously updated, intuitive, and easily accessible. The Colorado River Basin Actionable and Strategic Integrated Science and Technology Pilot Project was formed to demonstrate the effectiveness of addressing complex problems through stakeholder involvement an

Tracking heat in the Willamette River system, Oregon

The Willamette River Basin in northwestern Oregon is home to several cold-water fish species whose habitat has been altered by the Willamette Valley Project, a system of 13 dams and reservoirs operated by the U.S. Army Corps of Engineers. Water-resource managers use a variety of flow- and temperature-management strategies to ameliorate the effects of upstream Willamette Valley Project dams on the

The thermal landscape of the Willamette River—Patterns and controls on stream temperature and implications for flow management and cold-water salmonids

Water temperature is a primary control on the health, diversity, abundance, and distribution of aquatic species, but thermal degradation resulting from anthropogenic influences on rivers is a challenge to threatened species worldwide. In the Willamette River Basin, northwestern Oregon, spring-run Chinook salmon (Oncorhynchus tshawytscha) and winter-run steelhead (O. mykiss) are formerly abundant c

Assessment of habitat availability for juvenile Chinook salmon (Oncorhynchus tshawytscha) and steelhead (O. mykiss) in the Willamette River, Oregon

The Willamette River, Oregon, is home to two salmonid species listed as threatened under the Endangered Species Act, Upper WIllamette River spring Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River winter steelhead (O. mykiss). Streamflow in the Willamette River is regulated by upstream dams, 13 of which are operated by the U.S. Army Corps of Engineers (USACE) as part of the Will

Updates to models of streamflow and water temperature for 2011, 2015, and 2016 in rivers of the Willamette River Basin, Oregon

Mechanistic river models capable of simulating hydrodynamics and stream temperature are valuable tools for investigating thermal conditions and their relation to streamflow in river basins where upstream water storage and management decisions have an important influence on river reaches with threatened fish populations. In the Willamette River Basin in northwestern Oregon, a two-dimensional, hydro