Skip to main content
U.S. flag

An official website of the United States government


This list of Water Resources Mission Area publications includes both official USGS publications and journal articles authored by our scientists. A searchable database of all USGS publications can be accessed at the USGS Publications Warehouse.

Filter Total Items: 17655

Modeling the dynamic penetration depth of post-1950s water in unconfined aquifers using environmental tracers: Central Valley, California

The penetration depth of post-1950s recharge (D-1950) in aquifers is a marker that is frequently used to identify groundwater that is susceptible to anthropogenic contamination. Here, we compute D-1950 values at wells, interpolate them in space, and project them across time to map the moving front of modern recharge in four dimensions in the Central Valley aquifer system, California, USA. Tracers

Summary of extreme water-quality conditions in Upper Klamath Lake, Oregon, 2005–19

This study used the complete set of continuous water-quality (WQ) data and discrete measurements of total ammonia collected by the U.S. Geological Survey from 2005 to 2019 at the four core sites in Upper Klamath Lake, Oregon, to examine relations between variables and extreme conditions that may be harmful for endemic Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes breviro

U.S. Geological Survey Colorado River Basin Actionable and Strategic Integrated Science and Technology (ASIST)—Information Management Technology Plan

IntroductionMore than 840 publications, 575 data releases, and 330 project web pages from the U.S. Geological Survey (USGS) pertain to the Colorado River Basin. Limited interconnections between Colorado River Basin publications, data, and web pages restrict the ability to synthesize and interpret scientific resources. Currently, these pieces are spread across multiple isolated locations, internal

An assessment of future tidal marsh resilience in the San Francisco Estuary through modeling and quantifiable metrics of sustainability

Quantitative, broadly applicable metrics of resilience are needed to effectively manage tidal marshes into the future. Here we quantified three metrics of temporal marsh resilience: time to marsh drowning, time to marsh tipping point, and the probability of a regime shift, defined as the conditional probability of a transition to an alternative super-optimal, suboptimal, or drowned state. We used

A review of current capabilities and science gaps in water supply data, modeling, and trends for water availability assessments in the Upper Colorado River Basin

The Colorado River is a critical water resource in the southwestern United States, supplying drinking water for 40 million people in the region and water for irrigation of 2.2 million hectares of land. Extended drought in the Upper Colorado River Basin (UCOL) and the prospect of a warmer climate in the future pose water availability challenges for those charged with managing the river. Limited wat

Using continuous measurements of turbidity to predict suspended-sediment concentrations, loads, and sources in Flat Creek through the town of Jackson, Wyoming, 2019−20 — A pilot study

Flat Creek, a tributary to the Snake River in northwestern Wyoming, is an important source of irrigation water, fish and wildlife habitat, and local recreation. Since 1996, a section of Flat Creek within the town of Jackson has failed to meet Wyoming Department of Environmental Quality’s surface-water-quality standards for total suspended solids and turbidity required by its State water-use classi

Mapping areas of groundwater susceptible to transient contamination events from rapid infiltration into shallow fractured-rock aquifers in agricultural regions of the conterminous United States

Current time-invariant groundwater vulnerability assessments may not capture intermittent contamination events in landscape areas that experience rapid infiltration following precipitation or snowmelt. Occurrences of rapid infiltration and intermittent degradation of groundwater quality are frequently reported in fractured-rock aquifers. This investigation identifies landscape areas underlain by f

In situ soil moisture sensors in undisturbed soils

Soil moisture directly affects operational hydrology, food security, ecosystem services, and the climate system. However, the adoption of soil moisture data has been slow due to inconsistent data collection, poor standardization, and typically short record duration. Soil moisture, or quantitatively volumetric soil water content (SWC), is measured using buried, in situ sensors that infer SWC from a

Introduction to the special issue on fire impacts on hydrological processes

Fire has been present on the Earth since vegetation began colonizing the continents (Santos et al., 2017). The role of fire on terrestrial sedimentation processes was already highlighted by Schumm (1968) in his pioneering research to understand the detachment, transport, and sedimentation of material on the Planet. The use of fire by humans as a tool that transformed the landscapes of the world ha

High resolution spatiotemporal patterns of flow at the landscape scale in montane non-perennial streams

Intermittent and ephemeral streams in dryland environments support diverse assemblages of aquatic and terrestrial life. Understanding when and where water flows provide insights into the availability of water, its response to external controlling factors, and potential sensitivity to climate change and a host of human activities. Knowledge regarding the timing of drying/wetting cycles can also be

Estrogenic activity response to best management practice implementation in agricultural watersheds in the Chesapeake Bay watershed

Best management practices (BMPs) have been predominantly used throughout the Chesapeake Bay watershed (CBW) to reduce nutrients and sediments entering streams, rivers, and the bay. These practices have been successful in reducing loads entering the estuary and have shown the potential to reduce other contaminants (pesticides, hormonally active compounds, pathogens) in localized studies and modeled

Groundwater budgets for the Big Lost River Basin, south-central Idaho, 2000–19

The Big Lost River Basin, located in parts of Butte and Custer Counties in south-central Idaho, supports the communities surrounding the cities of Arco, Leslie, Mackay, and Moore and provides for agricultural resources that depend on a sustainable supply of surface water from the Big Lost River and its tributaries and groundwater from an unconfined aquifer. The aquifer, situated in a structurally