Brian A Ebel


Brian A. Ebel is a hydrologist who uses field measurements combined with numerical modeling to advance prediction and process representation of hydrologic processes. His work focuses on the quality and quantity of water resources and water-related hazards to human lives and infrastructure. Brian is currently in the Earth System Processes Division of the Water Mission Area. He has a Ph.D. in Hydrogeology from Stanford University and a B.A. in Earth and Planetary Science from Washington University in St. Louis.

Google Scholar Profile                         Research Gate 



(60) Ebel, B.A.,  J.A. Moody, and D.A. Martin (2019) Soil-physical and soil-hydraulic properties as a function of burn severity for 2013, 2015, and 2017 in the area affected by the 2013 Black Forest Fire, Colorado USA: U.S. Geological Survey data release, doi:10.5066/P9A88C67

(59) Ebel, B.A. and J.A. Moody (2019) Physical and hydraulic properties of soil in the area impacted by the 2017 Thomas Fire in California, USA: U.S. Geological Survey data release, doi:10.5066/P9DY6XJS

(58) Ebel, B.A. (2019) Soil-water retention, hydraulic conductivity, bulk density, and loss on ignition near Hess Creek in interior Alaska: U.S. Geological Survey data release, doi:10.5066/P9U26SS0

(57) Ebel, B.A., J.C. Koch, and M.A. Walvoord (2019) Soil physical, hydraulic, and thermal properties in interior Alaska, USA: Implications for hydrologic response to thawing permafrost conditions: Water Resources Research, v. 55, p. 4427-4447doi: 10.1029/2018WR023673

(56) Moody, J.A., R.G. Martin, and B.A. Ebel (2019) Sources of inherent infiltration variability in post-wildfire soils: Hydrological Processes, v. ##, p. ##-##doi: 10.1002/hyp.13543

(55) Ebel, B.A., (2019) Measurement method has a larger impact than spatial scale for plot-scale field-saturated hydraulic conductivity (Kfs) after wildfire and prescribed fire in forests: Earth Surface Processes and Landforms, v. 44, p. 1945– 1956, doi:10.1002/esp.4621

(54) Ebel, B.A. (2019) Soil thermal properties at recently burned and long-unburned boreal forest areas in interior Alaska, USA: U.S. Geological Survey data release, doi:10.5066/P9UF8MFI

(53) Mirus, B.B., D.M. Staley, J.W. Kean, J.B. Smith, R. Wooten, L.A. McGuire, and B.A. Ebel (2019) Conceptual framework for assessing disturbance impacts on debris flow initiation thresholds across hydroclimatic settings, 7th International Conference on Debris-Flow Hazards Mitigation , doi: 10.1002/2016WR019110

(52) Walvoord, M.A., C.I. Voss, B.A. Ebel, and B.J. Minsley (2019) Development of perennial thaw zones in boreal hillslopes enhances the potential for mobilization of permafrost carbon: Environmental Research Letters, 14, 015003, doi:10.1088/1748-9326/aaf0cc


(51) Minsley, B.J., N.J. Pastick, B.K. Wylie, M.A. Kass, B. Ebel, D. Rey, B.F.W. Chase, and S.R. James (2018) Alaska permafrost characterization: Geophysical and related field data collected from 2016-2017: U.S. Geological Survey data release, doi: 10.5066/P99PTGP4

(50) Ebel, B.A. (2018) Physical and hydraulic properties at recently burned and long-unburned boreal forest areas in interior Alaska, USA: U.S. Geological Survey data release, doi:10.5066/F7610Z7J

(49) Murphy, S. F., R.B. McCleskey, D.A. Martin, J.H. Writer, and B.A Ebel (2018) Fire, flood, and drought: Extreme climate events alter flowpaths and stream chemistry: Journal of Geophysical Research-Biogeosciences, 123, doi:10.1029/2017JG004349

(48) Ebel, B.A., J.W.Godt, N. Lu, J.A. Coe, J.B. Smith, and R.L. Baum (2018) Field and laboratory hydraulic characterization of landslide-prone soils in the Oregon Coast Range and implications for hydrologic simulation: Vadose Zone Journal, 17, 1800078, doi: 10.236/vzj2018.04.0078

(47) Ebel, B.A., O.C. Romero, and D.A. Martin (2018) Thresholds and relations for soil-hydraulic and soil-physical properties as a function of burn severity four years after the 2011 Las Conchas Fire, New Mexico, USA: Hydrological Processes, 32, 2263-2278, doi: 10.1002/hyp.13167. 

(46) Romero, O.C., B.A. Ebel, D.A. Martin, K.W. Buchan and A.D. Jornigan (2018) Post-wildfire Measurement of Soil Hydraulic Properties and Soil Physical Properties at Selected Sampling Sites in the Burn Scar of the 2011 Las Conchas Wildfire, Jemez Mountains, North-Central New Mexico: U.S. Geological Survey Scientific Investigations Report 2018-5028, 35 p. doi: 10.3133/sir20185028

(45) Rengers, F.K., L.M. McGuire, G. Tucker, and B.A. Ebel (2018), The evolution of a colluvial hollow following two transformational disturbances: a wildfire and a historic flood: Geomorphology, 309, 121-130, doi: 10.1016/j.geomorph.2018.01.003.


(44) Mirus, B.B., B.A. Ebel, C.H. Mohr, and N. Zegre (2017) Disturbance hydrology: Preparing for an increasingly disturbed future: Water Resources Research, 53, 10007-10016, doi: 10.1002/2017WR021084.

(43) Ebel, B.A., and O.C. Romero (2017) Soil physical and hydraulic properties in the area affected by the 2011 Las Conchas Fire in New Mexico: U.S. Geological Survey data release, doi: 10.5066/F71834RB

(42) Ebel, B.A., and D.A. Martin (2017) Meta-analysis of field-saturated hydraulic conductivity recovery following wildland fire: Applications for hydrologic model parameterization and resilience assessment, Hydrological Processes, 313682–3696, doi:10.1002/hyp.11288

(41) Wieting, C., B.A. Ebel, and K.S. Singha (2017) Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory, Journal of Hydrology-Regional Studies, 13, 43-57doi:10.1016/j.ejrh.2017.07.006.

(40) Hinckley, E.-L.S., B.A. Ebel, R.T. Barnes, S.F. Murphy, and S.P. Anderson (2017) Critical zone properties control the fate of Nitrogen during experimental rainfall in montane forests of the Colorado Front Range, Biogeochemistry, 132, 213-231,  doi: 10.1007/s10533-017-0299-8

(39) Ebel, B.A., and J.A. Moody (2017) Synthesis of soil-hydraulic properties and infiltration timescales in wildfire-affected soils, Hydrological Processes, 31, 324–340  doi: 10.1002/hyp.10998


(38) Ebel, B. A., F.K. Rengers, and G.E. Tucker (2016) Observed and simulated hydrologic response for a first-order catchment during extreme rainfall three years after wildfire disturbance, Water Resources Research, 52, 1-23,  doi: 10.1002/2016WR019110

(37) Ebel, B.A., (2016) Soil depth and soil-hydraulic properties of the Sugarloaf experimental catchment; 2010 Fourmile Canyon Fire area, Colorado: U.S. Geological Survey data release,

(36) Fatichi, S., E.R. Vivoni, F.L. Ogden, V. Y. Ivanov, B. Mirus, D. Gochis, C.W. Downer, M. Camporese, J.H. Davison, B. Ebel, N. Jones, J. Kim, J., G. Mascaro, R. Niswonger, P. Restrepo, R. Rigon, C. Shen, M. Sulis, and D. Tarboton, (2016), An overview of current applications, challenges, and future trends in distributed process-based models in hydrology: Journal of Hydrology,  537, 45-60,  doi: 10.1016/j.jhydrol.2016.03.026

(35)  Rengers, F. K., G. E. Tucker, J. A. Moody, and B. A. Ebel,  (2016), Illuminating wildfire erosion and deposition patterns with repeat terrestrial lidar: Journal of Geophysical Research: Earth Surface, 121, 588–608,  doi: 10.1002/2015JF003600

(34)  Loague, K., and B. A. Ebel,  (2016), Finite-element modeling of physics-based hillslope hydrology, Keith Beven and beyond, Hydrological Processes, 30, 2432–2437,  doi: 10.1002/hyp.10762

(33) Moody, J.A.  B. A. Ebel, P. Nyman, D. A. Martin, C. Stoof, and R. McKinley (2016), Relations between soil hydraulic properties and burn severity, International Journal of Wildland Fire, 25, 279-293,    doi: 10.1071/WF14062


(32)  EbelB. A, F. K. Rengers, and G. E.  Tucker (2015), Aspect-dependent soil saturation and insight into debris-flow initiation during extreme rainfall in the Colorado Front Range, Geology, 43, 659-662,   doi: 10.1130/G36741.1


(31) Ebel, B. A., and B. B. Mirus (2014), Disturbance hydrology: challenges and opportunities, Hydrological Processes, 28, 5140-5148,  doi: 10.1002/hyp.10256

(30) Moody, J. A., and B. A. Ebel (2014), Infiltration and runoff generation processes in fire-affected soils, Hydrological Processes, 28, 3432-3453,  doi: 10.1002/hyp.9857

(29) Hinckley, E. S., B. A. Ebel, R. T. Barnes, R. S. Anderson, M. W. Williams, and S. P. Anderson (2014), Aspect control of water movement on hillslopes near the rain-snow transition of the Colorado Front Range, Hydrological Processes, 28, 74–85, doi:10.1002/hyp.9549


(28) Ebel, B. A. (2013), Simulated unsaturated flow processes after wildfire and interactions with slope aspect, Water Resources Research, 49, 8090–8107, doi: 10.1002/2013WR014129

(27) Ebel, B. A., and J. A. Moody (2013), Rethinking infiltration in wildfire-affected soils, Hydrological Processes, 27, 1510–1514, doi: 10.1002/hyp.9696

(26) Loague, K., and , B. A. Ebel (2013), Conceptualization in catchment modeling. In Treatise on Geomorphology, Edited by J. F. Shroder, Vol. 7, pp. 105-121. San Diego, Academic Press, doi: 10.1016/B978-0-12-374739-6.00154-8

(25) Ebel, B. A. (2013), Wildfire and aspect effects on hydrologic states after the 2010 Fourmile Canyon Fire, Vadose Zone Journal, 12, vzj2012.0089, doi:10.2136/vzj2012.0089

(24)  Ebel, B. A., and J. R. Nimmo (2013), An alternative process model of preferential contaminant travel times in the unsaturated zone: Application to Rainier Mesa and Shoshone Mountain, Nevada, Environmental Modeling and Assessment, 18, 345-363, doi: 10.1007/s10666-012-9349-8 


(23) Ebel, B. A. (2012), Wildfire impacts on soil-water retention in the Colorado Front Range, USA, Water Resources Research, 48, W12515, doi:10.1029/2012WR012362

(22) Ebel, B. A., J. A. Moody, and D. A. Martin (2012), Hydrologic conditions controlling runoff generation immediately after wildfire,Water Resources Research, 48, W03529, doi:10.1029/2011WR011470

(21) Ebel, B. A., E. S. Hinckley, and D. A. Martin (2012), Soil-water dynamics and unsaturated storage during snowmelt following wildfire, Hydrology and Earth System Sciences, 16, 1401–1417,doi:10.5194/hess-16-1401-2012

(20) Ebel, B. A. (2012), Impacts of wildfire and slope aspect on soil temperature in a mountainous environment, Vadose Zone Journal, 11, vzj2012.0017, doi:10.2136/vzj2012.0017

(19) Moody, J. A, and B. A. Ebel (2012), Difference infiltrometer: A method to measure temporally variable infiltration rates during rainstorms, Hydrological Processes, 26, 3312-3318, doi: 10.1002/hyp.9424

(18) Moody, J. A, and B. A. Ebel (2012), Hyper-dry conditions provide new insights into the cause of extreme floods after wildfire, Catena, 93, 58-63, doi:10.1016/j.catena.2012.01.006

(17) Mirus, B. B., B. A. Ebel, C. S. Heppner, and K. Loague (2011), Assessing the detail needed to capture rainfall-runoff dynamics with physics-based hydrologic-response simulation, Water Resources Research, 47, W00H10,doi: 10.1029/2010WR009906

(16) Loague, K., C. S. Heppner, B. A. Ebel, and J. E. VanderKwaak (2010), The quixotic search for a comprehensive understanding of hydrologic response at the surface: Horton, Dunne, Dunton, and the role of concept-development simulation, Hydrological Processes, 24, 2499-2505, doi:10.1002/hyp.7834

(15) Ebel, B. A., K. Loague, and R. I. Borja (2010), The impacts of hysteresis on variably-saturated hydrologic response and slope failure, Environmental Earth Sciences, 61, 1215-1225, doi: 10.1007/s12665-009-0445-2

(14) BeVille, S. H., B. B. Mirus, B. A. Ebel, G. G. Mader, and K. Loague (2010), Using simulated hydrologic response to revisit the 1973 Lerida Court landslide, Environmental Earth Sciences, 61, 1249-1257, doi: 10.1007/s12665-010-0448-z 

(13) Ebel, B. A., and J. R. Nimmo (2010), Hydraulic property and soil textural classification measurements for Rainier Mesa, Nevada Test Site, Nevada. U.S. Geological Survey Open-File Report 2009-1264: 17 p. USGS  Pubs

(12) Ebel, B. A., and J. R. Nimmo (2009), Estimation of unsaturated zone traveltimes for Rainier Mesa and Shoshone Mountain, Nevada Test Site, Nevada, using a source-responsive preferential-flow model. U.S. Geological Survey Open-File Report 2009-1175: 74 p, USGS Pubs 

(11) Ebel, B. A., B. B. Mirus, C. S. Heppner, J. E. VanderKwaak, and K. Loague (2009), First-order exchange coefficient coupling for simulating surface water–groundwater interactions: Parameter sensitivity and consistency with a physics-based approach, Hydrological Processes, 23, 1949–1959,doi: 10.1002/hyp.7279

(10) Ebel, B. A., K. Loague, D. R. Montgomery, and W. E. Dietrich (2008), Physics-based continuous simulation of long-term near-surface hydrologic response for the Coos Bay experimental catchment, Water Resources Research, 44, W07417, doi:10.1029/2007WR006442

(9) Ebel, B. A., and K. Loague (2008), Rapid simulated hydrologic response within the variably saturated near surface, Hydrological Processes, 22, 464-471, doi:10.1002/hyp.6926

(8) Ebel, B. A., K. Loague, W. E. Dietrich, D. R. Montgomery, R. Torres, S. P. Anderson, and T. W. Giambelluca (2007), Near-surface hydrologic response for a steep, unchanneled catchment near Coos Bay, Oregon: 1. Sprinkling experiments, American Journal of Science, 307, 678-708, doi:10.2475/04.2007.02  

(7) Ebel, B. A., K. Loague, J. E. VanderKwaak, W. E. Dietrich, D. R. Montgomery, R. Torres, and S. P. Anderson (2007), Near-surface hydrologic response for a steep, unchanneled catchment near Coos Bay, Oregon: 2. Physics-based simulations, American Journal of Science, 307, 709-748, doi:10.2475/04.2007.03 

(6) Mirus, B. B., B. A. Ebel, K. Loague, and B. C. Wemple (2007), Simulated effect of a forest road on near-surface hydrologic response: Redux, Earth Surface Processes and Landforms, 32, 126–142, doi: 10.1002/esp.1387

(5) Ebel, B. A., and K. Loague (2006), Physics-based hydrologic-response simulation: Seeing through the fog of equifinality,Hydrological Processes, 20, 2887–2900, doi:10.1002/hyp.6388

(4) Borja, R. I., G. Oettl, B. Ebel, and K. Loague (2006), Hydrologically driven slope failure initiation in variably saturated porous media. In Modern Trends in Geomechanics. Wu, W. and H.S. Yu (Eds.), pp. 303-311, Springer-Verlag, Berlin Heidelberg, doi: 10.1007/978-3-540-35724-7_18

(3) Loague, K., C. S. Heppner, B. B. Mirus, B. A. Ebel, Q. Ran, A. E. Carr, S. H. BeVille, and J. E. VanderKwaak (2006), Physics-based hydrologic-response simulation: foundation for hydroecology and hydrogeomorphology, Hydrological Processes, 20, 1231–1237,doi:10.1002/hyp.6388

(2) Ehlmann, B. L., R. E. Arvidson, B. L. Jolliff, S. S. Johnson, B. Ebel, N. Lovenduski, J. D. Morris, J. A. Byers, N. O. Snider, and R. E. Criss (2005), Hydrologic and Isotopic Modeling of Alpine Lake Waiau, Mauna Kea, Hawai‘i, Pacific Science, 59, 1–15, doi:10.1353/psc.2005.0005

(1) Loague, K., C. S. Heppner, R. H. Abrams, A. E. Carr, J. E. VanderKwaak, and B. A. Ebel (2005), Further testing of the Integrated Hydrology Model (InHM): event-based simulations for a small rangeland catchment located near Chickasha, Oklahoma, Hydrological Processes, 19, 1373–1398,doi:10.1002/hyp.5566