Christine Kranenburg is a Cartographer at the St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida.
Science and Products
Aerial photogrammetry data and products of the North Carolina coast
Overlapping seabed images and location data acquired using the SQUID-5 system at Looe Key, Florida, in July 2021, with structure-from-motion derived point cloud, digital elevation model and orthomosaic of submerged topography
Overlapping seabed images and location data acquired using the SQUID-5 system at Eastern Dry Rocks coral reef, Florida, in May 2021, with derived point cloud, digital elevation model and orthomosaic of submerged topography
Aerial Imagery of the North Carolina Coast: 2020-02-08 to 2020-02-09
Aerial Imagery of the North Carolina Coast: 2020-05-08 to 2020-05-09
Developing bare-earth digital elevation models from structure-from-motion data on barrier islands, Dauphin Island, AL, 2018-2019
Aerial Imagery of the North Carolina Coast: 2019-10-11
Point clouds, bathymetric maps, and orthoimagery generated from overlapping lakebed images acquired with the SQUID-5 system near Dollar Point, Lake Tahoe, CA, March 2021
Aerial Imagery of the North Carolina Coast: 2019-09-08 to 2019-09-13, Post-Hurricane Dorian
Aerial Imagery of the North Carolina Coast: 2019-08-30 and 2019-09-02, Pre-Hurricane Dorian
Overlapping lakebed images and associated GNSS locations acquired near Dollar Point, Lake Tahoe, CA, March 2021
Time Series of Structure-from-Motion Products-Orthomosaics, Digital Elevation Models and Point Clouds: Little Dauphin Island and Pelican Island, Alabama, September 2018-April 2019
Human-in-the-Loop segmentation of earth surface imagery
Developing bare-earth digital elevation models from structure-from-motion data on barrier islands
Processing coastal imagery with Agisoft Metashape Professional Edition, version 1.6—Structure from motion workflow documentation
IntroductionStructure from motion (SFM) has become an integral technique in coastal change assessment; the U.S. Geological Survey (USGS) used Agisoft Metashape Professional Edition photogrammetry software to develop a workflow that processes coastline aerial imagery collected in response to storms since Hurricane Florence in 2018. This report details step-by-step instructions to create three-dimen
Accurate bathymetric maps from underwater digital imagery without ground control
Depth calibration and validation of the Experimental Advanced Airborne Research Lidar, EAARL-B
Science and Products
- Data
Filter Total Items: 48
Aerial photogrammetry data and products of the North Carolina coast
This data release presents structure-from-motion (SfM) products derived from aerial imagery collected along the North Carolina coast in response to storm events and the recovery process. U.S. Geological Survey (USGS) researchers use the aerial imagery and products to assess future coastal vulnerability, nesting habitats for wildlife, and provide data for hurricane impact models. This research is pOverlapping seabed images and location data acquired using the SQUID-5 system at Looe Key, Florida, in July 2021, with structure-from-motion derived point cloud, digital elevation model and orthomosaic of submerged topography
Underwater images were collected using a towed-surface vehicle with multiple downward-looking underwater cameras developed by the U.S. Geological Survey (USGS). The system is named the Structure-from-Motion (SfM) Quantitative Underwater Imaging Device with Five Cameras (SQUID-5). The raw images and associated navigation data were collected at Looe Key, a coral reef located within the Florida KeysOverlapping seabed images and location data acquired using the SQUID-5 system at Eastern Dry Rocks coral reef, Florida, in May 2021, with derived point cloud, digital elevation model and orthomosaic of submerged topography
Underwater images were collected using a towed-surface vehicle with multiple downward-looking underwater cameras developed by the U.S. Geological Survey (USGS). The system is named the Structure-from-Motion (SfM) Quantitative Underwater Imaging Device with Five Cameras (SQUID-5). The raw images and associated navigation data were collected at Eastern Dry Rocks, a coral reef located within the FloAerial Imagery of the North Carolina Coast: 2020-02-08 to 2020-02-09
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods.Aerial Imagery of the North Carolina Coast: 2020-05-08 to 2020-05-09
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods.Developing bare-earth digital elevation models from structure-from-motion data on barrier islands, Dauphin Island, AL, 2018-2019
This U.S. Geological Survey data release includes bare-earth digital elevation models (DEMs) that were produced by removing elevation bias in vegetated areas from structure-from-motion (SfM) data products for two sites on Dauphin Island, Alabama. These data were collected in the late fall of 2018 and spring of 2019. In addition to the bare-earth DEMs, this data release also includes vegetation masAerial Imagery of the North Carolina Coast: 2019-10-11
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three-dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods.Point clouds, bathymetric maps, and orthoimagery generated from overlapping lakebed images acquired with the SQUID-5 system near Dollar Point, Lake Tahoe, CA, March 2021
Underwater images were collected in Lake Tahoe, CA, using a recently developed towed-surface vehicle with multiple downward-looking underwater cameras. The system is named the Structure-from-Motion (SfM) Quantitative Underwater Imaging Device with Five Cameras (SQUID-5). The data were collected March 10th and 11th of 2021 to assess the accuracy, precision, and effectiveness of the new SQUID-5 cameAerial Imagery of the North Carolina Coast: 2019-09-08 to 2019-09-13, Post-Hurricane Dorian
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods.Aerial Imagery of the North Carolina Coast: 2019-08-30 and 2019-09-02, Pre-Hurricane Dorian
The U.S. Geological Survey (USGS) Remote Sensing Coastal Change (RSCC) project collects aerial imagery along coastal swaths, in response to storm events, with optimized endlap/sidelap and precise position information to create high-resolution orthomosaics, three dimensional (3D) point clouds, and digital elevation/surface models (DEMs/DSMs) using Structure-from-Motion (SfM) photogrammetry methods.Overlapping lakebed images and associated GNSS locations acquired near Dollar Point, Lake Tahoe, CA, March 2021
Underwater images were collected using a recently developed towed-surface vehicle with multiple downward-looking underwater cameras. The system is named the Structure-from-Motion (SfM) Quantitative Underwater Imaging Device with Five Cameras (SQUID-5). However, there were only 4 cameras operational for this collection due to a cable failure. Images were collected March 10th and 11th of 2021 by towTime Series of Structure-from-Motion Products-Orthomosaics, Digital Elevation Models and Point Clouds: Little Dauphin Island and Pelican Island, Alabama, September 2018-April 2019
Barrier islands are dynamic environments that are gradually shaped by currents, waves, and tides under quiescent conditions, yet can evolve in the time scale of hours to days during hurricanes and other extreme storms. Small unmanned aircraft systems (sUAS) allow the opportunity for collecting topographic data for monitoring purposes, with a temporal resolution that is well-suited for these dynami - Publications
Human-in-the-Loop segmentation of earth surface imagery
Segmentation, or the classification of pixels (grid cells) in imagery, is ubiquitously applied in the natural sciences. Manual methods are often prohibitively time-consuming, especially those images consisting of small objects and/or significant spatial heterogeneity of colors or textures. Labeling complicated regions of transition that in Earth surface imagery are represented by collections of miDeveloping bare-earth digital elevation models from structure-from-motion data on barrier islands
Unoccupied aerial systems can collect aerial imagery that can be used to develop structure-from-motion products with a temporal resolution well-suited to monitoring dynamic barrier island environments. However, topographic data created using photogrammetric techniques such as structure-from-motion represent the surface elevation including the vegetation canopy. Additional processing is required foProcessing coastal imagery with Agisoft Metashape Professional Edition, version 1.6—Structure from motion workflow documentation
IntroductionStructure from motion (SFM) has become an integral technique in coastal change assessment; the U.S. Geological Survey (USGS) used Agisoft Metashape Professional Edition photogrammetry software to develop a workflow that processes coastline aerial imagery collected in response to storms since Hurricane Florence in 2018. This report details step-by-step instructions to create three-dimen
ByAccurate bathymetric maps from underwater digital imagery without ground control
Structure-from-Motion (SfM) photogrammetry can be used with digital underwater photographs to generate high-resolution bathymetry and orthomosaics with millimeter-to-centimeter scale resolution at relatively low cost. Although these products are useful for assessing species diversity and health, they have additional utility for quantifying benthic community structure, such as coral growth and fineDepth calibration and validation of the Experimental Advanced Airborne Research Lidar, EAARL-B
The original National Aeronautics and Space Administration (NASA) Experimental Advanced Airborne Research Lidar (EAARL), was extensively modified to increase the spatial sampling density and improve performance in water ranging from 3–44 m. The new (EAARL-B) sensor features a 300% increase in spatial density, which was achieved by optically splitting each laser pulse into 3 pulses spatially separa