Patrick Barnard (Former Employee)
Science and Products
Filter Total Items: 15
Filter Total Items: 21
No Result Found
Filter Total Items: 139
An integrated approach for physical, economic, and demographic evaluation of coastal flood hazard adaptation in Santa Monica Bay, California An integrated approach for physical, economic, and demographic evaluation of coastal flood hazard adaptation in Santa Monica Bay, California
The increased risk of coastal flooding associated with climate-change driven sea level rise threatens to displace communities and cause substantial damage to infrastructure. Site-specific adaptation planning is necessary to mitigate the negative impacts of flooding on coastal residents and the built environment. Cost-benefit analyses used to evaluate coastal adaption strategies have...
Authors
Klaus Schroder, Michele A. Hummel, Kevin A. Befus, Patrick L. Barnard
Measuring and attributing sedimentary and geomorphic responses to modern climate change: Challenges and opportunities Measuring and attributing sedimentary and geomorphic responses to modern climate change: Challenges and opportunities
Today, climate change is affecting virtually all terrestrial and nearshore settings. This commentary discusses the challenges of measuring climate-driven physical landscape responses to modern global warming: short and incomplete data records, land use and seismicity masking climatic effects, biases in data availability and resolution, and signal attenuation in sedimentary systems. We...
Authors
Amy E. East, Jonathan A. Warrick, Dongfeng Li, Joel B. Sankey, Margaret H. Redsteer, Ann E. Gibbs, Jeffrey A. Coe, Patrick L. Barnard
Characterizing storm-induced coastal change hazards along the United States West Coast Characterizing storm-induced coastal change hazards along the United States West Coast
Traditional methods to assess the probability of storm-induced erosion and flooding from extreme water levels have limited use along the U.S. West Coast where swell dominates erosion and storm surge is limited. This effort presents methodology to assess the probability of erosion and flooding for the U.S. West Coast from extreme total water levels (TWLs), but the approach is applicable...
Authors
James B. Shope, Li H. Erikson, Patrick L. Barnard, Curt D. Storlazzi, Katherine A. Serafin, Kara S. Doran, Hilary F. Stockdon, Borja G. Reguero, Fernando J. Mendez, Sonia Castanedo, Alba Cid, Laura Cagigal, Peter Ruggiero
Global and regional sea level rise scenarios for the United States Global and regional sea level rise scenarios for the United States
This report and accompanying datasets from the U.S. Sea Level Rise and Coastal Flood Hazard Scenarios and Tools Interagency Task Force provide 1) sea level rise scenarios to 2150 by decade that include estimates of vertical land motion and 2) a set of extreme water level probabilities for various heights along the U.S. coastline. These data are available at 1-degree grids along the U.S...
Authors
William Sweet, Ben Hamlington, Robert E. Kopp, Christopher Weaver, Patrick L. Barnard, David Bekaert, William Brooks, Michael Craghan, Gregory Dusek, Thomas Frederikse, Gregory Garner, Ayesha S. Genz, John P. Krasting, Eric Larour, Doug Marcy, John J. Marra, Jayantha Obeysekera, Mark Osler, Matthew Pendleton, Daniel Roman, Lauren Schmied, Will Veatch, Kathleen D. White, Casey Zuzak
Digital Twin Earth - Coasts: Developing a fast and physics-informed surrogate model for coastal floods via neural operators Digital Twin Earth - Coasts: Developing a fast and physics-informed surrogate model for coastal floods via neural operators
Developing fast and accurate surrogates for physics-based coastal and ocean mod- els is an urgent need due to the coastal flood risk under accelerating sea level rise, and the computational expense of deterministic numerical models. For this purpose, we develop the first digital twin of Earth coastlines with new physics-informed machine learning techniques extending the state-of-art...
Authors
P. Jiang, N. Meinert, H. Jordao, C. Weisser, S. Holgate, A. Lavin, B. Lutjens, D. Newman, H. Wainright, C. Walker, Patrick L. Barnard
Changes in liquefaction severity in the San Francisco Bay Area with sea-level rise Changes in liquefaction severity in the San Francisco Bay Area with sea-level rise
This paper studies the impacts of sea-level rise on liquefaction triggering and severity around the San Francisco Bay Area, California, for the M 7.0 “HayWired” earthquake scenario along the Hayward fault. This work emerged from stakeholder engagement for the US Geological Survey releases of the HayWired earthquake scenario and the Coastal Storm Modeling System projects, in which local...
Authors
Alex R. Grant, Anne Wein, Kevin M. Befus, Juliette Finzi-Hart, Mike Frame, Rachel Volentine, Patrick L. Barnard, Keith L. Knudsen
Projecting climate dependent coastal flood risk with a hybrid statistical dynamical model Projecting climate dependent coastal flood risk with a hybrid statistical dynamical model
Numerical models for tides, storm surge, and wave runup have demonstrated ability to accurately define spatially varying flood surfaces. However these models are typically too computationally expensive to dynamically simulate the full parameter space of future oceanographic, atmospheric, and hydrologic conditions that will constructively compound in the nearshore to cause both extreme...
Authors
D. L. Anderson, P. Ruggiero, F. J. Mendez, Patrick L. Barnard, Li H. Erikson, Andrea C. O'Neill, M. Merrifield, A. Rueda, L. Cagigal, J. M. Marra
Drivers of extreme water levels in a large, urban, high-energy coastal estuary – A case study of the San Francisco Bay Drivers of extreme water levels in a large, urban, high-energy coastal estuary – A case study of the San Francisco Bay
Reliable and long-term hindcast data of water levels are essential in quantifying return period and values of extreme water levels. In order to inform design decisions on a local flood control district level, process-based numerical modeling has proven an essential tool to provide the needed temporal and spatial coverage for different extreme value analysis methods. To determine the...
Authors
Cornelis M. Nederhoff, Rohin Saleh, Babak Tehranirad, Liv M. Herdman, Li H. Erikson, Patrick L. Barnard, Mick Van der Wegen
Multiple climate change-driven tipping points for coastal systems Multiple climate change-driven tipping points for coastal systems
As the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach “tipping points,” at which hazard exposure substantially increases and...
Authors
Patrick L. Barnard, Jenifer Dugan, Henry M. Page, Nathan J. Wood, Juliette A. Finzi Hart, Daniel Cayan, Li H. Erikson, David A. Hubbard, Monique Myers, John M. Melack, Samuel F. Iacobellis
Twenty-first-century projections of shoreline change along inlet-interrupted coastlines Twenty-first-century projections of shoreline change along inlet-interrupted coastlines
Sandy coastlines adjacent to tidal inlets are highly dynamic and widespread landforms, where large changes are expected due to climatic and anthropogenic influences. To adequately assess these important changes, both oceanic (e.g., sea-level rise) and terrestrial (e.g., fluvial sediment supply) processes that govern the local sediment budget must be considered. Here, we present novel...
Authors
Janaka Bamunawala, Roshanka Ranasinghe, Ali Dastgheib, Robert .J. Nichols, A. Brad Murray, Patrick L. Barnard, T. A. J. G. Sirisena, Trang Minh Duong, Suzanne J. M. H. Hulscher, Ad van der Spek
The application of ensemble wave forcing to quantify uncertainty of shoreline change predictions The application of ensemble wave forcing to quantify uncertainty of shoreline change predictions
Reliable predictions and accompanying uncertainty estimates of coastal evolution on decadal to centennial time scales are increasingly sought. So far, most coastal change projections rely on a single, deterministic realization of the unknown future wave climate, often derived from a global climate model. Yet, deterministic projections do not account for the stochastic nature of future...
Authors
Sean Vitousek, Laura Cagigal, Jennifer Montano, Ana Rueda, Fernando Mendez, Giovanni Coco, Patrick L. Barnard
Assessment of flood forecast products for a coupled tributary-Coastal model Assessment of flood forecast products for a coupled tributary-Coastal model
Compound flooding, resulting from a combination of riverine and coastal processes, is a complex but important hazard to resolve along urbanized shorelines in the vicinity of river mouths. However, inland flooding models rarely consider oceanographic conditions, and vice versa for coastal flood models. Here, we describe the development of an operational, integrated coastal-watershed...
Authors
Robert Cifelli, Lynn E. Johnson, Jungho Kim, Tim Coleman, Greg Pratt, Liv M. Herdman, Rosanne C. Martyr-Koller, Juliette Finzi-Hart, Li H. Erikson, Patrick L. Barnard, Michael Anderson
Non-USGS Publications**
Barnard, P.L., Owen, L.A. and Finkel, R.C., 2004. Style and timing of glacial and paraglacial sedimentation in a monsoonal-influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya. Sedimentary Geology, Volume 165, p. 199-221, doi:10.1016/j.sedgeo.2003.11.009
Barnard, P.L., Owen, L.A., Sharma, M.C. and Finkel, R.C., 2004. Late Quaternary (Holocene) landscape evolution of a monsoon-influenced high Himalayan valley, Gori Ganga, Nanda Devi, NE Garhwal. Geomorphology, Volume 61 (1-2), p. 91-110, doi:10.1016/j.geomorph.2003.12.002
Barnard, P.L., 2003. The Timing and Nature of Glaciofluvial Erosion and Resedimentation in the Himalaya: the Role of Glacial and Paraglacial Processes in the Evolution of High Mountain Landscapes. Published Ph.D. Thesis, University of California, Riverside, 295 pp.
Davis, R.A., Jr. and Barnard, P.L., 2003. Morphodynamics of the barrier-inlet system, west-central Florida. Marine Geology, Volume 200 (1-4), p. 77-101, doi:10.1016/S0025-3227(03)00178-6
Finkel, R.C., Owen, L.A., Barnard, P.L. and Caffee, M.W., 2003. Beryllium-10 dating of Mount Everest moraines indicates a strong monsoonal influence and glacial synchroneity throughout the Himalaya. Geology, Volume 31, p. 561-564, doi:10.1130/0091-7613(2003)031<0561:BDOMEM>2.0.CO;2
Owen, L.A., Finkel, R.C., Ma, H., Spencer, J.Q., Derbyshire, E., Barnard, P.L. and Caffee, M.W., 2003. Timing and style of Late Quaternary glaciation in northeastern Tibet. Geological Society of America Bulletin, Volume 115 (11), p. 1356-1364, doi:10.1130/B25314.1
Owen, L.A., Ma, H., Derbyshire, E., Spencer, J.Q., Barnard, P.L., Zeng, Y.N., Finkel, R.C. and Caffee, M.W., 2003. The timing and style of Late Quaternary glaciation in the La Ji Mountains, NE Tibet: evidence for restricted glaciation during the latter part of the Last Glacial. Zeitschrift für Geomorphologie, Supplemental Volume 130, p. 263-276, ISBN 978-3-443-21130-1
Owen, L.A., Spencer, J.Q., Ma, H., Barnard, P.L., Derbyshire, E., Finkel, R.C., Caffee, M.W. and Zeng, Y.N., 2003. Timing of Late Quaternary glaciation along the southwestern slopes of the Qilian Shan, Tibet. Boreas, Volume 32, p. 281-291, doi:10.1111/j.1502-3885.2003.tb01083.x
Van der Woerd, J., Owen, L.A., Tapponnier, P., Xiwei, X., Kervyn, F., Finkel, R.C. and Barnard, P.L., 2003. Giant, ~M8 earthquake-triggered ice avalanches in the eastern Kunlun Shan, Northern Tibet: characteristics, nature and dynamics. Geological Society of America Bulletin, Volume 116 (3), p. 394-406, doi:10.1130/B25317.1
Barnard, P.L., Owen, L.A., Sharma, M.C. and Finkel, R.C., 2001. Natural and human-induced landsliding in the Garhwal Himalaya of Northern India. Geomorphology, Volume 40, p. 21-35, doi:10.1016/S0169-555X(01)00035-6
Davis, R.A., Jr. and Barnard, P.L., 2000. How anthropogenic factors in the back-barrier influence tidal inlet stability: examples from the Gulf Coast of Florida, USA. In: Pye, K. and Allen, J.R.L. (Eds.), Coastal and Estuarine Environments: sedimentology, geomorphology and geoarchaeology. Geological Society, London, Special Publication Number 175, p. 293-303, doi:10.1144/GSL.SP.2000.175.01.21
Barnard, P.L. and Owen, L.A., 2000. A selected bibliography for Late Quaternary glaciation in Tibet and Bordering Mountains. Quaternary International, Volume 65/66, p. 193-212
Barnard, P.L. and Davis, R.A., Jr., 1999. Anthropogenic vs. natural influences on inlet evolution: west-central Florida. Coastal Sediments ’99 Conference Proceedings, Fire Island, New York, Volume 2, p. 1489-1504
Barnard, P.L., 1998. Historical Morphodynamics of Inlet Channels: West-Central Florida. Master’s Thesis, University of South Florida, 179 pp.
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
Filter Total Items: 32
Science and Products
Filter Total Items: 15
Filter Total Items: 21
No Result Found
Filter Total Items: 139
An integrated approach for physical, economic, and demographic evaluation of coastal flood hazard adaptation in Santa Monica Bay, California An integrated approach for physical, economic, and demographic evaluation of coastal flood hazard adaptation in Santa Monica Bay, California
The increased risk of coastal flooding associated with climate-change driven sea level rise threatens to displace communities and cause substantial damage to infrastructure. Site-specific adaptation planning is necessary to mitigate the negative impacts of flooding on coastal residents and the built environment. Cost-benefit analyses used to evaluate coastal adaption strategies have...
Authors
Klaus Schroder, Michele A. Hummel, Kevin A. Befus, Patrick L. Barnard
Measuring and attributing sedimentary and geomorphic responses to modern climate change: Challenges and opportunities Measuring and attributing sedimentary and geomorphic responses to modern climate change: Challenges and opportunities
Today, climate change is affecting virtually all terrestrial and nearshore settings. This commentary discusses the challenges of measuring climate-driven physical landscape responses to modern global warming: short and incomplete data records, land use and seismicity masking climatic effects, biases in data availability and resolution, and signal attenuation in sedimentary systems. We...
Authors
Amy E. East, Jonathan A. Warrick, Dongfeng Li, Joel B. Sankey, Margaret H. Redsteer, Ann E. Gibbs, Jeffrey A. Coe, Patrick L. Barnard
Characterizing storm-induced coastal change hazards along the United States West Coast Characterizing storm-induced coastal change hazards along the United States West Coast
Traditional methods to assess the probability of storm-induced erosion and flooding from extreme water levels have limited use along the U.S. West Coast where swell dominates erosion and storm surge is limited. This effort presents methodology to assess the probability of erosion and flooding for the U.S. West Coast from extreme total water levels (TWLs), but the approach is applicable...
Authors
James B. Shope, Li H. Erikson, Patrick L. Barnard, Curt D. Storlazzi, Katherine A. Serafin, Kara S. Doran, Hilary F. Stockdon, Borja G. Reguero, Fernando J. Mendez, Sonia Castanedo, Alba Cid, Laura Cagigal, Peter Ruggiero
Global and regional sea level rise scenarios for the United States Global and regional sea level rise scenarios for the United States
This report and accompanying datasets from the U.S. Sea Level Rise and Coastal Flood Hazard Scenarios and Tools Interagency Task Force provide 1) sea level rise scenarios to 2150 by decade that include estimates of vertical land motion and 2) a set of extreme water level probabilities for various heights along the U.S. coastline. These data are available at 1-degree grids along the U.S...
Authors
William Sweet, Ben Hamlington, Robert E. Kopp, Christopher Weaver, Patrick L. Barnard, David Bekaert, William Brooks, Michael Craghan, Gregory Dusek, Thomas Frederikse, Gregory Garner, Ayesha S. Genz, John P. Krasting, Eric Larour, Doug Marcy, John J. Marra, Jayantha Obeysekera, Mark Osler, Matthew Pendleton, Daniel Roman, Lauren Schmied, Will Veatch, Kathleen D. White, Casey Zuzak
Digital Twin Earth - Coasts: Developing a fast and physics-informed surrogate model for coastal floods via neural operators Digital Twin Earth - Coasts: Developing a fast and physics-informed surrogate model for coastal floods via neural operators
Developing fast and accurate surrogates for physics-based coastal and ocean mod- els is an urgent need due to the coastal flood risk under accelerating sea level rise, and the computational expense of deterministic numerical models. For this purpose, we develop the first digital twin of Earth coastlines with new physics-informed machine learning techniques extending the state-of-art...
Authors
P. Jiang, N. Meinert, H. Jordao, C. Weisser, S. Holgate, A. Lavin, B. Lutjens, D. Newman, H. Wainright, C. Walker, Patrick L. Barnard
Changes in liquefaction severity in the San Francisco Bay Area with sea-level rise Changes in liquefaction severity in the San Francisco Bay Area with sea-level rise
This paper studies the impacts of sea-level rise on liquefaction triggering and severity around the San Francisco Bay Area, California, for the M 7.0 “HayWired” earthquake scenario along the Hayward fault. This work emerged from stakeholder engagement for the US Geological Survey releases of the HayWired earthquake scenario and the Coastal Storm Modeling System projects, in which local...
Authors
Alex R. Grant, Anne Wein, Kevin M. Befus, Juliette Finzi-Hart, Mike Frame, Rachel Volentine, Patrick L. Barnard, Keith L. Knudsen
Projecting climate dependent coastal flood risk with a hybrid statistical dynamical model Projecting climate dependent coastal flood risk with a hybrid statistical dynamical model
Numerical models for tides, storm surge, and wave runup have demonstrated ability to accurately define spatially varying flood surfaces. However these models are typically too computationally expensive to dynamically simulate the full parameter space of future oceanographic, atmospheric, and hydrologic conditions that will constructively compound in the nearshore to cause both extreme...
Authors
D. L. Anderson, P. Ruggiero, F. J. Mendez, Patrick L. Barnard, Li H. Erikson, Andrea C. O'Neill, M. Merrifield, A. Rueda, L. Cagigal, J. M. Marra
Drivers of extreme water levels in a large, urban, high-energy coastal estuary – A case study of the San Francisco Bay Drivers of extreme water levels in a large, urban, high-energy coastal estuary – A case study of the San Francisco Bay
Reliable and long-term hindcast data of water levels are essential in quantifying return period and values of extreme water levels. In order to inform design decisions on a local flood control district level, process-based numerical modeling has proven an essential tool to provide the needed temporal and spatial coverage for different extreme value analysis methods. To determine the...
Authors
Cornelis M. Nederhoff, Rohin Saleh, Babak Tehranirad, Liv M. Herdman, Li H. Erikson, Patrick L. Barnard, Mick Van der Wegen
Multiple climate change-driven tipping points for coastal systems Multiple climate change-driven tipping points for coastal systems
As the climate evolves over the next century, the interaction of accelerating sea level rise (SLR) and storms, combined with confining development and infrastructure, will place greater stresses on physical, ecological, and human systems along the ocean-land margin. Many of these valued coastal systems could reach “tipping points,” at which hazard exposure substantially increases and...
Authors
Patrick L. Barnard, Jenifer Dugan, Henry M. Page, Nathan J. Wood, Juliette A. Finzi Hart, Daniel Cayan, Li H. Erikson, David A. Hubbard, Monique Myers, John M. Melack, Samuel F. Iacobellis
Twenty-first-century projections of shoreline change along inlet-interrupted coastlines Twenty-first-century projections of shoreline change along inlet-interrupted coastlines
Sandy coastlines adjacent to tidal inlets are highly dynamic and widespread landforms, where large changes are expected due to climatic and anthropogenic influences. To adequately assess these important changes, both oceanic (e.g., sea-level rise) and terrestrial (e.g., fluvial sediment supply) processes that govern the local sediment budget must be considered. Here, we present novel...
Authors
Janaka Bamunawala, Roshanka Ranasinghe, Ali Dastgheib, Robert .J. Nichols, A. Brad Murray, Patrick L. Barnard, T. A. J. G. Sirisena, Trang Minh Duong, Suzanne J. M. H. Hulscher, Ad van der Spek
The application of ensemble wave forcing to quantify uncertainty of shoreline change predictions The application of ensemble wave forcing to quantify uncertainty of shoreline change predictions
Reliable predictions and accompanying uncertainty estimates of coastal evolution on decadal to centennial time scales are increasingly sought. So far, most coastal change projections rely on a single, deterministic realization of the unknown future wave climate, often derived from a global climate model. Yet, deterministic projections do not account for the stochastic nature of future...
Authors
Sean Vitousek, Laura Cagigal, Jennifer Montano, Ana Rueda, Fernando Mendez, Giovanni Coco, Patrick L. Barnard
Assessment of flood forecast products for a coupled tributary-Coastal model Assessment of flood forecast products for a coupled tributary-Coastal model
Compound flooding, resulting from a combination of riverine and coastal processes, is a complex but important hazard to resolve along urbanized shorelines in the vicinity of river mouths. However, inland flooding models rarely consider oceanographic conditions, and vice versa for coastal flood models. Here, we describe the development of an operational, integrated coastal-watershed...
Authors
Robert Cifelli, Lynn E. Johnson, Jungho Kim, Tim Coleman, Greg Pratt, Liv M. Herdman, Rosanne C. Martyr-Koller, Juliette Finzi-Hart, Li H. Erikson, Patrick L. Barnard, Michael Anderson
Non-USGS Publications**
Barnard, P.L., Owen, L.A. and Finkel, R.C., 2004. Style and timing of glacial and paraglacial sedimentation in a monsoonal-influenced high Himalayan environment, the upper Bhagirathi Valley, Garhwal Himalaya. Sedimentary Geology, Volume 165, p. 199-221, doi:10.1016/j.sedgeo.2003.11.009
Barnard, P.L., Owen, L.A., Sharma, M.C. and Finkel, R.C., 2004. Late Quaternary (Holocene) landscape evolution of a monsoon-influenced high Himalayan valley, Gori Ganga, Nanda Devi, NE Garhwal. Geomorphology, Volume 61 (1-2), p. 91-110, doi:10.1016/j.geomorph.2003.12.002
Barnard, P.L., 2003. The Timing and Nature of Glaciofluvial Erosion and Resedimentation in the Himalaya: the Role of Glacial and Paraglacial Processes in the Evolution of High Mountain Landscapes. Published Ph.D. Thesis, University of California, Riverside, 295 pp.
Davis, R.A., Jr. and Barnard, P.L., 2003. Morphodynamics of the barrier-inlet system, west-central Florida. Marine Geology, Volume 200 (1-4), p. 77-101, doi:10.1016/S0025-3227(03)00178-6
Finkel, R.C., Owen, L.A., Barnard, P.L. and Caffee, M.W., 2003. Beryllium-10 dating of Mount Everest moraines indicates a strong monsoonal influence and glacial synchroneity throughout the Himalaya. Geology, Volume 31, p. 561-564, doi:10.1130/0091-7613(2003)031<0561:BDOMEM>2.0.CO;2
Owen, L.A., Finkel, R.C., Ma, H., Spencer, J.Q., Derbyshire, E., Barnard, P.L. and Caffee, M.W., 2003. Timing and style of Late Quaternary glaciation in northeastern Tibet. Geological Society of America Bulletin, Volume 115 (11), p. 1356-1364, doi:10.1130/B25314.1
Owen, L.A., Ma, H., Derbyshire, E., Spencer, J.Q., Barnard, P.L., Zeng, Y.N., Finkel, R.C. and Caffee, M.W., 2003. The timing and style of Late Quaternary glaciation in the La Ji Mountains, NE Tibet: evidence for restricted glaciation during the latter part of the Last Glacial. Zeitschrift für Geomorphologie, Supplemental Volume 130, p. 263-276, ISBN 978-3-443-21130-1
Owen, L.A., Spencer, J.Q., Ma, H., Barnard, P.L., Derbyshire, E., Finkel, R.C., Caffee, M.W. and Zeng, Y.N., 2003. Timing of Late Quaternary glaciation along the southwestern slopes of the Qilian Shan, Tibet. Boreas, Volume 32, p. 281-291, doi:10.1111/j.1502-3885.2003.tb01083.x
Van der Woerd, J., Owen, L.A., Tapponnier, P., Xiwei, X., Kervyn, F., Finkel, R.C. and Barnard, P.L., 2003. Giant, ~M8 earthquake-triggered ice avalanches in the eastern Kunlun Shan, Northern Tibet: characteristics, nature and dynamics. Geological Society of America Bulletin, Volume 116 (3), p. 394-406, doi:10.1130/B25317.1
Barnard, P.L., Owen, L.A., Sharma, M.C. and Finkel, R.C., 2001. Natural and human-induced landsliding in the Garhwal Himalaya of Northern India. Geomorphology, Volume 40, p. 21-35, doi:10.1016/S0169-555X(01)00035-6
Davis, R.A., Jr. and Barnard, P.L., 2000. How anthropogenic factors in the back-barrier influence tidal inlet stability: examples from the Gulf Coast of Florida, USA. In: Pye, K. and Allen, J.R.L. (Eds.), Coastal and Estuarine Environments: sedimentology, geomorphology and geoarchaeology. Geological Society, London, Special Publication Number 175, p. 293-303, doi:10.1144/GSL.SP.2000.175.01.21
Barnard, P.L. and Owen, L.A., 2000. A selected bibliography for Late Quaternary glaciation in Tibet and Bordering Mountains. Quaternary International, Volume 65/66, p. 193-212
Barnard, P.L. and Davis, R.A., Jr., 1999. Anthropogenic vs. natural influences on inlet evolution: west-central Florida. Coastal Sediments ’99 Conference Proceedings, Fire Island, New York, Volume 2, p. 1489-1504
Barnard, P.L., 1998. Historical Morphodynamics of Inlet Channels: West-Central Florida. Master’s Thesis, University of South Florida, 179 pp.
**Disclaimer: The views expressed in Non-USGS publications are those of the author and do not represent the views of the USGS, Department of the Interior, or the U.S. Government.
Filter Total Items: 32