Sheila Murphy is a Research Hydrologist for the USGS Water Resources Mission Area.
Sheila Murphy is a research hydrologist who focuses on how disturbances (such as wildfire, floods, hurricanes, land use change) alter watershed response, water quality, and water quantity. Her recent research has evaluated the effects of wildfire on water quality in the western U.S., and the hydrologic and geochemical responses to land cover change and hurricanes in a tropical forest in Puerto Rico.
Science and Products
Filter Total Items: 47
A call for strategic water-quality monitoring to advance assessment and prediction of wildfire impacts on water supplies
Wildfires pose a risk to water supplies in the western U.S. and many other parts of the world, due to the potential for degradation of water quality. However, a lack of adequate data hinders prediction and assessment of post-wildfire impacts and recovery. The dearth of such data is related to lack of funding for monitoring extreme events and the challenge of measuring the outsized hydrologic and e
Authors
Sheila F. Murphy, Charles N. Alpers, Chauncey W. Anderson, John R. Banta, Johanna Blake, Kurt D. Carpenter, Gregory D. Clark, David W. Clow, Laura A. Hempel, Deborah A. Martin, Michael Meador, Gregory Mendez, Anke Mueller-Solger, Marc A. Stewart, Sean E. Payne, Cara L. Peterman-Phipps, Brian A. Ebel
Modeling post-wildfire hydrologic response: Review and future directions for applications of physically based distributed simulation
Wildfire is a growing concern as climate shifts. The hydrologic effects of wildfire, which include elevated hazards and changes in water quantity and quality, are increasingly assessed using numerical models. Post-wildfire application of physically based distributed models provides unique insight into the underlying processes that affect water resources after wildfire. This work reviews and synthe
Authors
Brian A. Ebel, Zachary M. Shephard, Michelle A. Walvoord, Sheila F. Murphy, Trevor Fuess Partridge, Kimberlie Perkins
Nitrogen isotopes indicate vehicle emissions and biomass burning dominate ambient ammonia across Colorado's Front Range urban corridor
Urban ammonia (NH3) emissions contribute to poor local air quality and can be transported to rural landscapes, impacting sensitive ecosystems. The Colorado Front Range urban corridor encompasses the Denver Metropolitan Area, rural farmland/rangeland and montane forest between the city and the Rocky Mountains. Reactive nitrogen emissions from the corridor are partly responsible for increased N depo
Authors
J. David Felix, Alexander Berner, Gregory A. Wetherbee, Sheila F. Murphy, Ruth C. Heindel
Elevated nitrogen deposition to fire-prone forests adjacent to urban and agricultural areas, Colorado front range, USA
As humans increasingly dominate the nitrogen cycle, deposition of reactive nitrogen (Nr) will continue to have adverse consequences for ecosystems. In the Rocky Mountains, Nr deposition remains elevated and has become increasingly dominated by ammonium, despite efforts to reduce emissions. Currently, spatial models of Nr deposition do not fully account for urban and agricultural emissions, sources
Authors
Ruth C. Heindel, Sheila F. Murphy, Deborah A. Repert, Gregory A. Wetherbee, Alexander Liethen, David W. Clow, Toby A. Halamka
Extreme rainstorms drive exceptional organic carbon export from forested humid-tropical rivers in Puerto Rico
Extreme rainfall events in the humid-tropical Luquillo Mountains, Puerto Rico export the bulk of suspended sediment and particulate organic carbon. Using 25 years of river carbon and suspended sediment data, which targeted hurricanes and other large rainstorms, we estimated biogenic particulate organic carbon yields of 65 ± 16 tC km−2 yr−1 for the Icacos and 17.7 ± 5.1 tC km−2 yr−1 for the Mameyes
Authors
Kasey E. Clark, Robert Stallard, Sheila F. Murphy, Martha A. Scholl, Grizelle González, Alain F. Plante, William H. McDowell
Aquatic-terrestrial linkages control metabolism and carbon dynamics in a mid-sized, urban stream influenced by snowmelt
Freshwater streams can exchange nutrients and carbon with the surrounding terrestrial environment through various mechanisms including physical erosion, flooding, leaf drop, and snowmelt. These aquatic-terrestrial interactions are crucial in carbon mobilization, transformation, ecosystem productivity, and have important implications for the role of freshwater ecosystems in the global carbon budget
Authors
Ariel P. Reed, Edward G. Stets, Sheila F. Murphy, Emily Mullins
U.S. Geological Survey wildland fire science strategic plan, 2021–26
The U.S. Geological Survey (USGS) Wildland Fire Science Strategic Plan defines critical, core fire science capabilities for understanding fire-related and fire-responsive earth system processes and patterns, and informing management decision making. Developed by USGS fire scientists and executive leadership, and informed by conversations with external stakeholders, the Strategic Plan is aligned wi
Authors
Paul F. Steblein, Rachel A. Loehman, Mark P. Miller, Joseph R. Holomuzki, Suzanna C. Soileau, Matthew L. Brooks, Mia Drane-Maury, Hannah M. Hamilton, Jason W. Kean, Jon E. Keeley, Robert R. Mason,, Alexa J. McKerrow, James Meldrum, Edmund B. Molder, Sheila F. Murphy, Birgit Peterson, Geoffrey S. Plumlee, Douglas J. Shinneman, Phillip J. van Mantgem, Alison York
By
Ecosystems Mission Area, Natural Hazards Mission Area, Science Analytics and Synthesis (SAS) Program, Alaska Science Center, Earth Resources Observation and Science (EROS) Center , Forest and Rangeland Ecosystem Science Center, Fort Collins Science Center, Geologic Hazards Science Center, Geology, Geophysics, and Geochemistry Science Center, Western Ecological Research Center (WERC)
Wildfires: Identification of a new suite of aromatic polycarboxylic acids in ash and surface water
Ash and surface water samples collected after wildfires in four different geographical locations (California, Colorado, Kansas and Alberta) were analyzed. The ash samples were leached with deionized water, and leachates were concentrated by solid phase extraction and analyzed by liquid chromatography/time-of-flight mass spectrometry. In addition, three surface water samples and a lysimeter water s
Authors
Imma Ferrer, E. Michael Thurman, Jerry A. Zweigenbaum, Sheila F. Murphy, Jackson P. Webster, Fernando L. Rosario-Ortiz
Summer runoff generation in foothill catchments of the Colorado Front Range
Climatic shifts, disturbances, and land-use change can alter hydrologic flowpaths, water quality, and water supply to downstream communities. Prior research investigating streamflow generation processes in mountainous areas has largely focused on high-elevation alpine and subalpine catchments; less is known about these processes in lower-elevation foothills and montane catchments. In these lower-e
Authors
Isaac S. Bukoski, Sheila F. Murphy, Andrew L. Birch, Holly R. Barnard
Signatures of hydrologic function across the critical zone observatory network
Despite a multitude of small catchment studies, we lack a deep understanding of how variations in critical zone architecture lead to variations in hydrologic states and fluxes. This study characterizes hydrologic dynamics of 15 catchments of the U.S. Critical Zone Observatory (CZO) network where we hypothesized that our understanding of subsurface structure would illuminate patterns of hydrologic
Authors
Adam N. Wlostowski, Noah P. Molotch, Suzanne P. Anderson, Susan L. Brantley, Jon Chorover, David Dralle, Praveen Kumar, Li Li, Kathleen A. Lohse, John Mallard, Jennifer C. McIntosh, Sheila F. Murphy, Eric Parrish, Mohammad Safeeq, Mark Seyfried, Yuning Shi, Ciaran Harman
Fates and fingerprints of sulfur and carbon following wildfire in economically important croplands of California, U.S.
Sulfur (S) is widely used in agriculture, yet little is known about its fates within upland watersheds, particularly in combination with disturbances like wildfire. Our study examined the effects of land use and wildfire on the biogeochemical “fingerprints,” or the quantity and chemical composition, of S and carbon (C). We conducted our research within the Napa River Watershed, California, U.S., w
Authors
Anna L. Hermes, Brian A. Ebel, Sheila F. Murphy, Eve-Lyn S. Hinckley
Wildfire-driven changes in hydrology mobilize arsenic and metals from legacy mine waste
Wildfires burning in watersheds that have been mined and since revegetated pose unique risks to downstream water supplies. A wildfire near Boulder, Colorado that burned a forested watershed recovering from mining disturbance that occurred 80-160 years ago allowed us to 1) assess arsenic and metal contamination in streams draining the burned area for a five-year period after the wildfire and 2) det
Authors
Sheila F. Murphy, R. Blaine McCleskey, Deborah A. Martin, JoAnn Holloway, Jeffrey H. Writer
Water Quality After Wildfire
Wildfires pose a substantial risk to water supplies because they can lead to severe flooding, erosion, and delivery of sediment, nutrients, and metals to rivers, lakes, and reservoirs. The USGS works with federal and state land managers and local water providers to monitor and assess water quality after wildfires in order to help protect our Nation’s water resources.
Developing a "fire-aware" stream gage network by integrating USGS enterprise databases
Wildfires affect streams and rivers when they burn vegetation and scorch the ground. This makes floods more likely to happen and reduces water quality. Public managers, first responders, fire scientists, and hydrologists need timely information before and after a fire to plan for floods and water treatment. This project will create a method to combine national fire databases with the StreamStats w
Connections between Forested and Urban Landscapes and Implications for Water Supply
Interactions between forested and urban landscapes can lead to reciprocal effects that have substantial impacts on water supply and ecology. Air pollution from urban and forested landscapes can be deposited on adjacent forests, while forest disturbance, such as wildfires and floods, can remobilize those contaminants. Additionally, pollutants from legacy land use (e.g., mining) can also be...
Diel and synoptic sampling data from Boulder Creek and South Boulder Creek, near Boulder, Colorado, September–October 2019
Multiple sampling campaigns were conducted near Boulder, Colorado, to quantify constituent concentrations and loads in Boulder Creek and its tributary, South Boulder Creek. Diel sampling was initiated at approximately 1100 hours on September 17, 2019, and continued until approximately 2300 hours on September 18, 2019. During this time period, samples were collected at two locations on Boulder Cree
Temperature, relative humidity and cloud immersion data for Luquillo Mountains, eastern Puerto Rico, 2014-2019
Supplementary data for studies conducted in the Luquillo Experimental Forest (LEF), eastern Puerto Rico include measurements of temperature, relative humidity and cloud immersion at 30-minute resolution. Temperature and relative humidity were measured at five sites; two primary sites have records from March 2014 to June 2019; other sites have shorter records within that period. From these data,
Chemistry of water, stream sediment, wildfire ash, soil, dust, and mine waste for Fourmile Creek Watershed, Colorado, 2010-2019
In response to the 2010 Fourmile Canyon fire near Boulder, Colorado, the U.S. Geological Survey collected data to support investigations into the magnitude and critical drivers of water-quality impairment after wildfire. We analyzed chemistry of stream water, sediment, wildfire ash, soil, dust, and mine waste for metals and other parameters in order to evaluate the effects of legacy mining and wil
Geospatial data for Luquillo Mountains, Puerto Rico: Mean annual precipitation, elevation, watershed outlines, and rain gage locations
These geospatial data sets were developed as part of a new analysis of all known current and historical rain gages in the Luquillo Mountains, Puerto Rico published in the journal article Murphy, S.F., Stallard, R.F., Scholl, M.A., Gonzalez, G., and Torres-Sanchez, A.J., 2017, Reassessing rainfall in the Luquillo Mountains, Puerto Rico: Local and global ecohydrological implications: PLOS One 12(7):
Science and Products
- Publications
Filter Total Items: 47
A call for strategic water-quality monitoring to advance assessment and prediction of wildfire impacts on water supplies
Wildfires pose a risk to water supplies in the western U.S. and many other parts of the world, due to the potential for degradation of water quality. However, a lack of adequate data hinders prediction and assessment of post-wildfire impacts and recovery. The dearth of such data is related to lack of funding for monitoring extreme events and the challenge of measuring the outsized hydrologic and eAuthorsSheila F. Murphy, Charles N. Alpers, Chauncey W. Anderson, John R. Banta, Johanna Blake, Kurt D. Carpenter, Gregory D. Clark, David W. Clow, Laura A. Hempel, Deborah A. Martin, Michael Meador, Gregory Mendez, Anke Mueller-Solger, Marc A. Stewart, Sean E. Payne, Cara L. Peterman-Phipps, Brian A. EbelModeling post-wildfire hydrologic response: Review and future directions for applications of physically based distributed simulation
Wildfire is a growing concern as climate shifts. The hydrologic effects of wildfire, which include elevated hazards and changes in water quantity and quality, are increasingly assessed using numerical models. Post-wildfire application of physically based distributed models provides unique insight into the underlying processes that affect water resources after wildfire. This work reviews and syntheAuthorsBrian A. Ebel, Zachary M. Shephard, Michelle A. Walvoord, Sheila F. Murphy, Trevor Fuess Partridge, Kimberlie PerkinsNitrogen isotopes indicate vehicle emissions and biomass burning dominate ambient ammonia across Colorado's Front Range urban corridor
Urban ammonia (NH3) emissions contribute to poor local air quality and can be transported to rural landscapes, impacting sensitive ecosystems. The Colorado Front Range urban corridor encompasses the Denver Metropolitan Area, rural farmland/rangeland and montane forest between the city and the Rocky Mountains. Reactive nitrogen emissions from the corridor are partly responsible for increased N depoAuthorsJ. David Felix, Alexander Berner, Gregory A. Wetherbee, Sheila F. Murphy, Ruth C. HeindelElevated nitrogen deposition to fire-prone forests adjacent to urban and agricultural areas, Colorado front range, USA
As humans increasingly dominate the nitrogen cycle, deposition of reactive nitrogen (Nr) will continue to have adverse consequences for ecosystems. In the Rocky Mountains, Nr deposition remains elevated and has become increasingly dominated by ammonium, despite efforts to reduce emissions. Currently, spatial models of Nr deposition do not fully account for urban and agricultural emissions, sourcesAuthorsRuth C. Heindel, Sheila F. Murphy, Deborah A. Repert, Gregory A. Wetherbee, Alexander Liethen, David W. Clow, Toby A. HalamkaExtreme rainstorms drive exceptional organic carbon export from forested humid-tropical rivers in Puerto Rico
Extreme rainfall events in the humid-tropical Luquillo Mountains, Puerto Rico export the bulk of suspended sediment and particulate organic carbon. Using 25 years of river carbon and suspended sediment data, which targeted hurricanes and other large rainstorms, we estimated biogenic particulate organic carbon yields of 65 ± 16 tC km−2 yr−1 for the Icacos and 17.7 ± 5.1 tC km−2 yr−1 for the MameyesAuthorsKasey E. Clark, Robert Stallard, Sheila F. Murphy, Martha A. Scholl, Grizelle González, Alain F. Plante, William H. McDowellAquatic-terrestrial linkages control metabolism and carbon dynamics in a mid-sized, urban stream influenced by snowmelt
Freshwater streams can exchange nutrients and carbon with the surrounding terrestrial environment through various mechanisms including physical erosion, flooding, leaf drop, and snowmelt. These aquatic-terrestrial interactions are crucial in carbon mobilization, transformation, ecosystem productivity, and have important implications for the role of freshwater ecosystems in the global carbon budgetAuthorsAriel P. Reed, Edward G. Stets, Sheila F. Murphy, Emily MullinsU.S. Geological Survey wildland fire science strategic plan, 2021–26
The U.S. Geological Survey (USGS) Wildland Fire Science Strategic Plan defines critical, core fire science capabilities for understanding fire-related and fire-responsive earth system processes and patterns, and informing management decision making. Developed by USGS fire scientists and executive leadership, and informed by conversations with external stakeholders, the Strategic Plan is aligned wiAuthorsPaul F. Steblein, Rachel A. Loehman, Mark P. Miller, Joseph R. Holomuzki, Suzanna C. Soileau, Matthew L. Brooks, Mia Drane-Maury, Hannah M. Hamilton, Jason W. Kean, Jon E. Keeley, Robert R. Mason,, Alexa J. McKerrow, James Meldrum, Edmund B. Molder, Sheila F. Murphy, Birgit Peterson, Geoffrey S. Plumlee, Douglas J. Shinneman, Phillip J. van Mantgem, Alison YorkByEcosystems Mission Area, Natural Hazards Mission Area, Science Analytics and Synthesis (SAS) Program, Alaska Science Center, Earth Resources Observation and Science (EROS) Center , Forest and Rangeland Ecosystem Science Center, Fort Collins Science Center, Geologic Hazards Science Center, Geology, Geophysics, and Geochemistry Science Center, Western Ecological Research Center (WERC)Wildfires: Identification of a new suite of aromatic polycarboxylic acids in ash and surface water
Ash and surface water samples collected after wildfires in four different geographical locations (California, Colorado, Kansas and Alberta) were analyzed. The ash samples were leached with deionized water, and leachates were concentrated by solid phase extraction and analyzed by liquid chromatography/time-of-flight mass spectrometry. In addition, three surface water samples and a lysimeter water sAuthorsImma Ferrer, E. Michael Thurman, Jerry A. Zweigenbaum, Sheila F. Murphy, Jackson P. Webster, Fernando L. Rosario-OrtizSummer runoff generation in foothill catchments of the Colorado Front Range
Climatic shifts, disturbances, and land-use change can alter hydrologic flowpaths, water quality, and water supply to downstream communities. Prior research investigating streamflow generation processes in mountainous areas has largely focused on high-elevation alpine and subalpine catchments; less is known about these processes in lower-elevation foothills and montane catchments. In these lower-eAuthorsIsaac S. Bukoski, Sheila F. Murphy, Andrew L. Birch, Holly R. BarnardSignatures of hydrologic function across the critical zone observatory network
Despite a multitude of small catchment studies, we lack a deep understanding of how variations in critical zone architecture lead to variations in hydrologic states and fluxes. This study characterizes hydrologic dynamics of 15 catchments of the U.S. Critical Zone Observatory (CZO) network where we hypothesized that our understanding of subsurface structure would illuminate patterns of hydrologicAuthorsAdam N. Wlostowski, Noah P. Molotch, Suzanne P. Anderson, Susan L. Brantley, Jon Chorover, David Dralle, Praveen Kumar, Li Li, Kathleen A. Lohse, John Mallard, Jennifer C. McIntosh, Sheila F. Murphy, Eric Parrish, Mohammad Safeeq, Mark Seyfried, Yuning Shi, Ciaran HarmanFates and fingerprints of sulfur and carbon following wildfire in economically important croplands of California, U.S.
Sulfur (S) is widely used in agriculture, yet little is known about its fates within upland watersheds, particularly in combination with disturbances like wildfire. Our study examined the effects of land use and wildfire on the biogeochemical “fingerprints,” or the quantity and chemical composition, of S and carbon (C). We conducted our research within the Napa River Watershed, California, U.S., wAuthorsAnna L. Hermes, Brian A. Ebel, Sheila F. Murphy, Eve-Lyn S. HinckleyWildfire-driven changes in hydrology mobilize arsenic and metals from legacy mine waste
Wildfires burning in watersheds that have been mined and since revegetated pose unique risks to downstream water supplies. A wildfire near Boulder, Colorado that burned a forested watershed recovering from mining disturbance that occurred 80-160 years ago allowed us to 1) assess arsenic and metal contamination in streams draining the burned area for a five-year period after the wildfire and 2) detAuthorsSheila F. Murphy, R. Blaine McCleskey, Deborah A. Martin, JoAnn Holloway, Jeffrey H. Writer - Science
Water Quality After Wildfire
Wildfires pose a substantial risk to water supplies because they can lead to severe flooding, erosion, and delivery of sediment, nutrients, and metals to rivers, lakes, and reservoirs. The USGS works with federal and state land managers and local water providers to monitor and assess water quality after wildfires in order to help protect our Nation’s water resources.Developing a "fire-aware" stream gage network by integrating USGS enterprise databases
Wildfires affect streams and rivers when they burn vegetation and scorch the ground. This makes floods more likely to happen and reduces water quality. Public managers, first responders, fire scientists, and hydrologists need timely information before and after a fire to plan for floods and water treatment. This project will create a method to combine national fire databases with the StreamStats wConnections between Forested and Urban Landscapes and Implications for Water Supply
Interactions between forested and urban landscapes can lead to reciprocal effects that have substantial impacts on water supply and ecology. Air pollution from urban and forested landscapes can be deposited on adjacent forests, while forest disturbance, such as wildfires and floods, can remobilize those contaminants. Additionally, pollutants from legacy land use (e.g., mining) can also be... - Data
Diel and synoptic sampling data from Boulder Creek and South Boulder Creek, near Boulder, Colorado, September–October 2019
Multiple sampling campaigns were conducted near Boulder, Colorado, to quantify constituent concentrations and loads in Boulder Creek and its tributary, South Boulder Creek. Diel sampling was initiated at approximately 1100 hours on September 17, 2019, and continued until approximately 2300 hours on September 18, 2019. During this time period, samples were collected at two locations on Boulder CreeTemperature, relative humidity and cloud immersion data for Luquillo Mountains, eastern Puerto Rico, 2014-2019
Supplementary data for studies conducted in the Luquillo Experimental Forest (LEF), eastern Puerto Rico include measurements of temperature, relative humidity and cloud immersion at 30-minute resolution. Temperature and relative humidity were measured at five sites; two primary sites have records from March 2014 to June 2019; other sites have shorter records within that period. From these data,Chemistry of water, stream sediment, wildfire ash, soil, dust, and mine waste for Fourmile Creek Watershed, Colorado, 2010-2019
In response to the 2010 Fourmile Canyon fire near Boulder, Colorado, the U.S. Geological Survey collected data to support investigations into the magnitude and critical drivers of water-quality impairment after wildfire. We analyzed chemistry of stream water, sediment, wildfire ash, soil, dust, and mine waste for metals and other parameters in order to evaluate the effects of legacy mining and wilGeospatial data for Luquillo Mountains, Puerto Rico: Mean annual precipitation, elevation, watershed outlines, and rain gage locations
These geospatial data sets were developed as part of a new analysis of all known current and historical rain gages in the Luquillo Mountains, Puerto Rico published in the journal article Murphy, S.F., Stallard, R.F., Scholl, M.A., Gonzalez, G., and Torres-Sanchez, A.J., 2017, Reassessing rainfall in the Luquillo Mountains, Puerto Rico: Local and global ecohydrological implications: PLOS One 12(7): - News