Skip to main content
U.S. flag

An official website of the United States government

Images

Images of Yellowstone.

Filter Total Items: 687
Seismograms showing M4.8 earthquake near Norris Geyser Basin in Yellowstone on March 30, 201
Seismograms showing Yellowstone M4.8 earthquake on March 30, 2014
Seismograms showing Yellowstone M4.8 earthquake on March 30, 2014
Seismograms showing Yellowstone M4.8 earthquake on March 30, 2014

Record section showing horizontal component seismograms from stations in the Yellowstone region from the M4.8 earthquake that occurred near Norris Geyser Basin on March 30, 2014.  The vertical blue dashed line represents the origin time of the earthquake at 12:34:39.16 UTC.  The red line represents the P-wave arrival with a velocity of ~5.7 km/s.  The

Record section showing horizontal component seismograms from stations in the Yellowstone region from the M4.8 earthquake that occurred near Norris Geyser Basin on March 30, 2014.  The vertical blue dashed line represents the origin time of the earthquake at 12:34:39.16 UTC.  The red line represents the P-wave arrival with a velocity of ~5.7 km/s.  The

Seismic record of Yellowstone station YHB for the M4.8 earthquake of March 30, 2014
Record from Yellowstone station YHB for M4.8 quake of Mar 30, 2014
Record from Yellowstone station YHB for M4.8 quake of Mar 30, 2014
Record from Yellowstone station YHB for M4.8 quake of Mar 30, 2014

3-component seismograms from station YHB for the M4.8 earthquake that occurred near Norris Geyser Basin on March 30, 2014, and showing the P-wave arrival pick (red) and the S-wave arrival pick (green) as determined by UUSS analysts.  The vertical blue dashed line represents the origin time of the earthquake at 12:34:39.16 UTC.

3-component seismograms from station YHB for the M4.8 earthquake that occurred near Norris Geyser Basin on March 30, 2014, and showing the P-wave arrival pick (red) and the S-wave arrival pick (green) as determined by UUSS analysts.  The vertical blue dashed line represents the origin time of the earthquake at 12:34:39.16 UTC.

Variations of repeating earthquake activity through time. Click to ...
Variations of repeating earthquake activity through time
Variations of repeating earthquake activity through time
Variations of repeating earthquake activity through time

Top: Map of repeating earthquake areas corresponding to the deformation episodes, below. Bottom: Left 1996-1998 Yellowstone caldera uplift episode. Middle: 1998-2004 subsidence episode. Right: 2004-2010 uplift episode. Bottom: vertical ground deformation from GPS observations at station, WLWY, on the Sour Creek resurgent dome.

Top: Map of repeating earthquake areas corresponding to the deformation episodes, below. Bottom: Left 1996-1998 Yellowstone caldera uplift episode. Middle: 1998-2004 subsidence episode. Right: 2004-2010 uplift episode. Bottom: vertical ground deformation from GPS observations at station, WLWY, on the Sour Creek resurgent dome.

Photos taken from helicopter over Mammoth Hot Springs
Photos taken from helicopter over Mammoth Hot Springs
Photos taken from helicopter over Mammoth Hot Springs
Photos taken from helicopter over Mammoth Hot Springs

Top: Examples of some of the photos taken from helicopter over Mammoth Hot Springs in September 2013. Photos taken by Hank Heasler. Bottom: Hill-shade image calculated from the 2013 DEM over Mammoth Hot Springs and that was derived from a series of overlapping photos using Structure-from-Motion photogrammetry.

Top: Examples of some of the photos taken from helicopter over Mammoth Hot Springs in September 2013. Photos taken by Hank Heasler. Bottom: Hill-shade image calculated from the 2013 DEM over Mammoth Hot Springs and that was derived from a series of overlapping photos using Structure-from-Motion photogrammetry.

Example of Yellowstone earthquake multiplets (families of repeating...
Example of Yellowstone earthquake multiplets (families of repeating...
Example of Yellowstone earthquake multiplets (families of repeating...
Example of Yellowstone earthquake multiplets (families of repeating...

The seismic records or waveforms are from two seismic stations, and show the highly repetitive and similar nature of the seismic events.

Time history of Yellowstone caldera uplift and subsidence patterns ...
Time history of Yellowstone caldera uplift and subsidence patterns ...
Time history of Yellowstone caldera uplift and subsidence patterns ...
Time history of Yellowstone caldera uplift and subsidence patterns ...

Time history of Yellowstone Caldera uplift (black line) and subsidence patterns along with quarterly catalog earthquake counts (blue bars). Note that large swarms in 1985 and 2010 accompany uplift to subsidence of caldera. The vertical deformation on the right axis was measured at the Sour Creek (SC) dome in the eastern part of the Yellowstone Caldera.

Time history of Yellowstone Caldera uplift (black line) and subsidence patterns along with quarterly catalog earthquake counts (blue bars). Note that large swarms in 1985 and 2010 accompany uplift to subsidence of caldera. The vertical deformation on the right axis was measured at the Sour Creek (SC) dome in the eastern part of the Yellowstone Caldera.

Huckleberry Ridge Tuff deposit, Yellowstone
Huckleberry Ridge Tuff deposit, Yellowstone
Huckleberry Ridge Tuff deposit, Yellowstone
Huckleberry Ridge Tuff deposit, Yellowstone

Huckleberry Ridge Tuff deposit exposed on Mt. Everts, near the northern boundary of Yellowstone National Park. The deposit was created by ash falling from the plume early in the eruption sequence, 2.08 million years ago. Photo by Madison Myers, Montana State University.

Huckleberry Ridge Tuff deposit exposed on Mt. Everts, near the northern boundary of Yellowstone National Park. The deposit was created by ash falling from the plume early in the eruption sequence, 2.08 million years ago. Photo by Madison Myers, Montana State University.

Photo of the Old Faithful Inn lobby
Photo of the Old Faithful Inn lobby
Photo of the Old Faithful Inn lobby
Photo of the Old Faithful Inn lobby

Photo of the Old Faithful Inn lobby, which features a six-story-tall fireplace and chimney made from rocks quarried form a rhyolite lava flow in Yellowstone.  NPS photo by Jim Peaco, July 22, 2013.

Photo of the Old Faithful Inn lobby, which features a six-story-tall fireplace and chimney made from rocks quarried form a rhyolite lava flow in Yellowstone.  NPS photo by Jim Peaco, July 22, 2013.

Map of Yellowstone National Park showing Brimstone Basin and other ...
Map of YNP showing Brimstone Basin and other areas known to release...
Map of YNP showing Brimstone Basin and other areas known to release...
Map of YNP showing Brimstone Basin and other areas known to release...

Map of Yellowstone National Park showing Brimstone Basin and other areas known to release carbon dioxide from the ground.

YVO Webcam, October 27, 2012. Webcam overlooks Biscuit Basin in Yel...
YVO Webcam, Oct. 27, 2012. Webcam overlooks Biscuit Basin in YNP.
YVO Webcam, Oct. 27, 2012. Webcam overlooks Biscuit Basin in YNP.
Huckleberry Ridge Tuff fall deposits at Mount Everts, Yellowstone
Huckleberry Ridge Tuff fall deposits at Mount Everts, Yellowstone
Huckleberry Ridge Tuff fall deposits at Mount Everts, Yellowstone
Huckleberry Ridge Tuff fall deposits at Mount Everts, Yellowstone

View of ripples caused by wind winnowing of the Huckleberry Ridge Tuff fall deposits at Mount Everts. Other layers below show evidence for rain and hail landing with the falling ash. Scale in centimeters and inches.

View of ripples caused by wind winnowing of the Huckleberry Ridge Tuff fall deposits at Mount Everts. Other layers below show evidence for rain and hail landing with the falling ash. Scale in centimeters and inches.

A geyser basin and hill in the distance, with pine trees in the foreground, under a mostly cloudy sky
Image of Biscuit Basin (visible between the trees) captured by the YVO mobile webcam on June 17, 2012
Image of Biscuit Basin (visible between the trees) captured by the YVO mobile webcam on June 17, 2012
black bulbous rock sample on white tubing resting on a barren, pale, sandy surface
Sulfur “cinder” from Cinder Pool in Norris Geyser Basin, Yellowstone National Park
Sulfur “cinder” from Cinder Pool in Norris Geyser Basin, Yellowstone National Park
Sulfur “cinder” from Cinder Pool in Norris Geyser Basin, Yellowstone National Park

Sulfur “cinder” attached to a sampling tube that was extracted from Cinder Pool in Norris Geyser Basin.  The “cinder” is sulfur that existed as a molten layer at the bottom of the pool and was carried upward by gas and solidified.  The black color is due to the presence of finely dispersed pyrite.

Sulfur “cinder” attached to a sampling tube that was extracted from Cinder Pool in Norris Geyser Basin.  The “cinder” is sulfur that existed as a molten layer at the bottom of the pool and was carried upward by gas and solidified.  The black color is due to the presence of finely dispersed pyrite.

View north along U.S. Route 20 from near Ashton, ID, at the margin of the Huckleberry Ridge Tuff in the distance
View north along U.S. Route 20 from near Ashton, ID, at the margin of the Huckleberry Ridge Tuff in the distance
View north along U.S. Route 20 from near Ashton, ID, at the margin of the Huckleberry Ridge Tuff in the distance
View north along U.S. Route 20 from near Ashton, ID, at the margin of the Huckleberry Ridge Tuff in the distance

Google maps photo taken just north of Ashton, ID, along U.S. Route 20. The photo was taken looking north towards Island Park, ID. The forested ridge in the distance marks the margin of a caldera that formed 2.08 million years ago, when the Huckleberry Ridge Tuff erupted.

Mud Geyser, Yellowstone
Mud Geyser, Yellowstone
Mud Geyser, Yellowstone
Mud Geyser, Yellowstone

Steam rises from the Mud Geyser fumarole on the northeast side of the Mud Volcano thermal area in Yellowstone National Park. Gas that discharges from Mud Geyser has the most magmatic character of any sampled feature in Yellowstone.

Steam rises from the Mud Geyser fumarole on the northeast side of the Mud Volcano thermal area in Yellowstone National Park. Gas that discharges from Mud Geyser has the most magmatic character of any sampled feature in Yellowstone.

Looking west from the intersection of U.S. Route 20 and Old Hwy 47, in Idaho, at lava flows associated with the Henrys Fork caldera
Looking west from the intersection of U.S. Route 20 and Old Hwy 47, in Idaho, at lava flows associated with the Henrys Fork caldera
Looking west from the intersection of U.S. Route 20 and Old Hwy 47, in Idaho, at lava flows associated with the Henrys Fork caldera
Looking west from the intersection of U.S. Route 20 and Old Hwy 47, in Idaho, at lava flows associated with the Henrys Fork caldera

Google Maps photo taken at the intersection of U.S. Route 20 and Old Hwy 47 in Idaho, looking west. The tops of Moonshine Mountain and Silver Lake dome, rhyolite lava flows located inside the caldera, are indicated with a dashed black line.

USGS employees deploys a water conductivity/temperature/depth probe...
USGS employees deploys a water conductivity/temperature/depth probe...
USGS employees deploys a water conductivity/temperature/depth probe...
USGS employees deploys a water conductivity/temperature/depth probe...

USGS employees deploys a water conductivity/temperature/depth probe (AquaTroll) for a temporary study along the Madison River, Yellowstone.

Helicorder for Plate Boundary Observatory borehole seismometer
Helicorder for Plate Boundary Observatory borehole seismometer B207...
Helicorder for Plate Boundary Observatory borehole seismometer B207...
Helicorder for Plate Boundary Observatory borehole seismometer B207...

Seismicity is shown for January 17, 2010 through the Feb 8, 2010. Borehole seismometer B207 is located about 7 miles (12 km) northeast of the 2010 swarm. Seismic data are provided by the National Science Foundation funded Plate Boundary Observatory operated by UNAVCO.

Seismicity is shown for January 17, 2010 through the Feb 8, 2010. Borehole seismometer B207 is located about 7 miles (12 km) northeast of the 2010 swarm. Seismic data are provided by the National Science Foundation funded Plate Boundary Observatory operated by UNAVCO.

National Park Service employee inspects a Plate Boundary Observator...
NPS inspects Plate Boundary Observatory strainmeter/seismometer
NPS inspects Plate Boundary Observatory strainmeter/seismometer
NPS inspects Plate Boundary Observatory strainmeter/seismometer

National Park Service employee inspects a Plate Boundary Observatory strainmeter/seismometer station.

Was this page helpful?