Skip to main content
U.S. flag

An official website of the United States government

Images

Images of Yellowstone.

Filter Total Items: 681
MODIS satellite image of New Zealand’s North Island
MODIS satellite image of New Zealand’s North Island
MODIS satellite image of New Zealand’s North Island
MODIS satellite image of New Zealand’s North Island

MODIS satellite image of New Zealand’s North Island acquired on October 23, 2002 (https://earthobservatory.nasa.gov/images/3101/new-zealand).  Lake Taupō is located in the center of North Island.

A hinged metal cover, flush with the ground, is open, exposing a metal rod just below the ground surface.
Benchmark T366, north of Canyon Junction in Yellowstone National Park
Benchmark T366, north of Canyon Junction in Yellowstone National Park
Benchmark T366, north of Canyon Junction in Yellowstone National Park

Benchmark T366, was installed in 1987 a few miles north of Canyon Junction in Yellowstone National Park. Rather than being a brass or aluminum disk, the benchmark is a rod that was driven into the ground until it would not sink any lower.  The precise elevation of the top of the rod was established by surveying methods, and an access cover flush with the g

Benchmark T366, was installed in 1987 a few miles north of Canyon Junction in Yellowstone National Park. Rather than being a brass or aluminum disk, the benchmark is a rod that was driven into the ground until it would not sink any lower.  The precise elevation of the top of the rod was established by surveying methods, and an access cover flush with the g

Schematic sketch map of mountain ranges  and valleys that might have existed in Yellowstone before 2.2 million years ago
Interpretive reconstruction of the Yellowstone Plateau region before initial plateau volcanism
Interpretive reconstruction of the Yellowstone Plateau region before initial plateau volcanism
Interpretive reconstruction of the Yellowstone Plateau region before initial plateau volcanism

Interpretive reconstruction of the Yellowstone Plateau region before initial plateau volcanism (a little before 2 million years ago). The region was entirely an elevated and faulted mountainous terrain with no basin in the present plateau area.

Geological Map of the Monument Geyser Basin area
Geological Map of the Monument Geyser Basin area
Geological Map of the Monument Geyser Basin area
Geological Map of the Monument Geyser Basin area

Geological Map of the area around Monument Geyser Basin and Beryl Spring, taken from the Geological Map of the Yellowstone Plateau Area (Christiansen, 2001)

Geological Map of the area around Monument Geyser Basin and Beryl Spring, taken from the Geological Map of the Yellowstone Plateau Area (Christiansen, 2001)

Map showing zoom of geology in area of Madison Junction, Yellowstone NP, with red star indicating outcrop location
Map of Yellowstone showing the extent of Lava Creek Tuff and geologic map of Madison Junction area
Map of Yellowstone showing the extent of Lava Creek Tuff and geologic map of Madison Junction area
Map of Yellowstone showing the extent of Lava Creek Tuff and geologic map of Madison Junction area

Left: Map of Yellowstone showing the extent of mapped Lava Creek Tuff members A and B, which erupted during the formation of Yellowstone Caldera about 631,000 years ago. Right: Geologic map of Madison Junction (1:125,000).

Map of the northwestern U.S., showing the approximate locations of Yellowstone hotspot volcanic fields (orange) and Columbia Riv
Locations of Yellowstone hotspot volcanic fields
Locations of Yellowstone hotspot volcanic fields
Locations of Yellowstone hotspot volcanic fields

Map of the northwestern U.S., showing the approximate locations of Yellowstone hotspot volcanic fields (orange) and Columbia River Basalts (gray). Boundary of Yellowstone National Park is shown in yellow. Modified from Barry et al. (GSA Special Paper 497, p.

Map of the northwestern U.S., showing the approximate locations of Yellowstone hotspot volcanic fields (orange) and Columbia River Basalts (gray). Boundary of Yellowstone National Park is shown in yellow. Modified from Barry et al. (GSA Special Paper 497, p.

Scientist from the USGS collects a gas sample into an evacuated/vac...
Scientist from the USGS collects a gas sample into an evacuated/vac...
Scientist from the USGS collects a gas sample into an evacuated/vac...
Scientist from the USGS collects a gas sample into an evacuated/vac...

Scientist from the USGS collects a gas sample into an evacuated/vacuum flas from a steam vent near the Shoshone Geyser Basin.

Obsidian Cliff, Yellowstone National Park....
Obsidian Cliff, YNP.
Obsidian Cliff, YNP.
Obsidian Cliff, YNP.

Obsidian Cliff exposes the interior of a thick rhyolite lava flow erupted about 180,000 years ago. The vertical columns are cooling fractures that formed as the thick lava flow cooled and crystallized. The flow consists of obsidian, a dark volcanic glass.

Obsidian Cliff exposes the interior of a thick rhyolite lava flow erupted about 180,000 years ago. The vertical columns are cooling fractures that formed as the thick lava flow cooled and crystallized. The flow consists of obsidian, a dark volcanic glass.

Schematic illustration showing the 1912 Novarupta eruption in Alaska and the caldera collapse at Mount Katmai
Schematic illustration showing the 1912 Novarupta eruption in Alaska and the caldera collapse at Mount Katmai
Schematic illustration showing the 1912 Novarupta eruption in Alaska and the caldera collapse at Mount Katmai
View from the SE rim of McDermitt caldera, Nevada and Oregon, showing rhyolite lavas overlain by thin outflow McDermitt Tuff in the south wall of the caldera
View from the SE rim of McDermitt caldera, Nevada and Oregon, of the Thacker Pass area
View from the SE rim of McDermitt caldera, Nevada and Oregon, of the Thacker Pass area
View from the SE rim of McDermitt caldera, Nevada and Oregon, of the Thacker Pass area

View from the SE rim of McDermitt caldera, Nevada and Oregon, showing rhyolite lavas overlain by thin outflow McDermitt Tuff in the south wall of the caldera. The low area that makes up most of the photo is intracaldera tuffaceous sediment. This is Thacker Pass, the site of largest and highest-grade lithium deposits in the region.

View from the SE rim of McDermitt caldera, Nevada and Oregon, showing rhyolite lavas overlain by thin outflow McDermitt Tuff in the south wall of the caldera. The low area that makes up most of the photo is intracaldera tuffaceous sediment. This is Thacker Pass, the site of largest and highest-grade lithium deposits in the region.

Folds in outflow sheets of McDermitt Tuff, from the eruption that formed McDermitt Caldera in Nevada and Oregon
Rheomorphism in outflow sheets of McDermitt Tuff, Nevada and Oregon
Rheomorphism in outflow sheets of McDermitt Tuff, Nevada and Oregon
Rheomorphism in outflow sheets of McDermitt Tuff, Nevada and Oregon

Folds in outflow sheets of McDermitt Tuff, from the eruption that formed McDermitt Caldera in Nevada and Oregon about 16.4 million years ago.  The folding is called “rheomorphism” and occurred as the hot ash deposit flowed under its own weight shortly after it was deposited over preexisting topographic highs and lows.  The texture resembles that of rhyolit

Folds in outflow sheets of McDermitt Tuff, from the eruption that formed McDermitt Caldera in Nevada and Oregon about 16.4 million years ago.  The folding is called “rheomorphism” and occurred as the hot ash deposit flowed under its own weight shortly after it was deposited over preexisting topographic highs and lows.  The texture resembles that of rhyolit

Graphic depicting the distribution of Yellowstone ash across the U....
Map of volcanic ash fall as a result of eruptions from Yellowstone,...
Map of volcanic ash fall as a result of eruptions from Yellowstone,...
Map of volcanic ash fall as a result of eruptions from Yellowstone,...

Map of volcanic ashfall. Areas of the United States that once were covered by volcanic ash from Yellowstone's giant eruptions 2 million and 630,000 years ago, compared with ashfall from the 760,000-year-old Long Valley caldera eruptions at Mammoth Lakes, California, and the 1980 eruption of Mount St. Helens, Washington.

Map of volcanic ashfall. Areas of the United States that once were covered by volcanic ash from Yellowstone's giant eruptions 2 million and 630,000 years ago, compared with ashfall from the 760,000-year-old Long Valley caldera eruptions at Mammoth Lakes, California, and the 1980 eruption of Mount St. Helens, Washington.

Steam rises from a hot pool. The foreground is barren, and the background has some low tropical vegetation.
Agua Shuca thermal area, El Salvador
Agua Shuca thermal area, El Salvador
Agua Shuca thermal area, El Salvador

Steam rises above a hot pool at Agua Shuca, one of many thermal areas of the Ahuachapán geothermal field of El Salvador. A sudden hydrothermal explosion at Agua Shuca in October 1990 ejected steam and debris within a 200-m-radius, and about 25 people living adjacent to the thermal area were killed.

Steam rises above a hot pool at Agua Shuca, one of many thermal areas of the Ahuachapán geothermal field of El Salvador. A sudden hydrothermal explosion at Agua Shuca in October 1990 ejected steam and debris within a 200-m-radius, and about 25 people living adjacent to the thermal area were killed.

geological map with colors depending different rock units
Excerpt from the MBMG Geological Map of the Gardiner 30’ x 60’ Quadrangle
Excerpt from the MBMG Geological Map of the Gardiner 30’ x 60’ Quadrangle
Excerpt from the MBMG Geological Map of the Gardiner 30’ x 60’ Quadrangle

Excerpt from the Geological Map of the Gardiner 30’ x 60’ Quadrangle, South-Central Montana, by Berg and others (1999), focused on Devil’s Slide (colorful blue-green stripes at center of map excerpt).  Full unit description and map available online as Montana Bureau of Miles and Geology Open File No.

Excerpt from the Geological Map of the Gardiner 30’ x 60’ Quadrangle, South-Central Montana, by Berg and others (1999), focused on Devil’s Slide (colorful blue-green stripes at center of map excerpt).  Full unit description and map available online as Montana Bureau of Miles and Geology Open File No.

Geologists in Little Dipper boat on Grand Prismatic Spring
Geologists in Little Dipper boat on Grand Prismatic Spring
Geologists in Little Dipper boat on Grand Prismatic Spring
Geologists in Little Dipper boat on Grand Prismatic Spring

Yellowstone National Park employees Rick Hutchinson (right) and Jim Peaco (left) guide the specially designed Little Dipper boat into the boiling waters of Grand Prismatic Spring to collect measurements of the temperature and structure of the feature. National Park Service photo by Josh Robbins in 1996.

Yellowstone National Park employees Rick Hutchinson (right) and Jim Peaco (left) guide the specially designed Little Dipper boat into the boiling waters of Grand Prismatic Spring to collect measurements of the temperature and structure of the feature. National Park Service photo by Josh Robbins in 1996.

Queen's Laundry bathhouse, in the Lower Geyser Basin of Yellowstone National Park
Queen's Laundry bathhouse, in Yellowstone's Lower Geyser Basin
Queen's Laundry bathhouse, in Yellowstone's Lower Geyser Basin
Queen's Laundry bathhouse, in Yellowstone's Lower Geyser Basin

Queen's Laundry bathhouse, in the Lower Geyser Basin of Yellowstone National Park.  Building began under superintendent Philetus Norris in 1881 but was never finished.

Gas plume rises above lava fountains in a lava lake in the summit crater of Nyiragongo volcano, Democratic Republic of the Congo, on 20 August 1994
Gas plume rises above lava fountains in a lava lake in the summit crater of Nyiragongo volcano, Democratic Republic of the Congo, on 20 August 1994
Gas plume rises above lava fountains in a lava lake in the summit crater of Nyiragongo volcano, Democratic Republic of the Congo, on 20 August 1994
Gas plume rises above lava fountains in a lava lake in the summit crater of Nyiragongo volcano, Democratic Republic of the Congo, on 20 August 1994

A gas plume rises above lava fountains in a lava lake in the summit crater of Nyiragongo volcano on 20 August 1994. USGS photo by Jack Lockwood.

Black and white line drawing showing the geology of the Wind River Range, Wyoming
Geologic map of the Wind River Range, Wyoming
Geologic map of the Wind River Range, Wyoming
Geologic map of the Wind River Range, Wyoming

Geologic map of the Wind River Range from Blackstone, 1993 (The Wind River Range, Wyoming: An Overview. Wyoming Geological Association. Jubilee Anniversary Field Conference Guidebook: Wyoming Geology, Past, Present, and Future. Pg. 121-140).

Geologic map of the Wind River Range from Blackstone, 1993 (The Wind River Range, Wyoming: An Overview. Wyoming Geological Association. Jubilee Anniversary Field Conference Guidebook: Wyoming Geology, Past, Present, and Future. Pg. 121-140).

Deep-ocean hydrothermal vent system from the East Pacific Rise
Deep-ocean hydrothermal vent system from the East Pacific Rise
Deep-ocean hydrothermal vent system from the East Pacific Rise
Deep-ocean hydrothermal vent system from the East Pacific Rise

Photo of a deep-ocean hydrothermal vent system from the East Pacific Rise at 9º39’N latitude and 2550 m (8366 ft) depth showing vigorously venting “black smoker” hydrothermal fluids (329 °C, or 624 °F) that are dark gray to black due to rapid precipitation of iron, copper, and zinc sulfide minerals as the hot water mixes with cold bottom waters.

Photo of a deep-ocean hydrothermal vent system from the East Pacific Rise at 9º39’N latitude and 2550 m (8366 ft) depth showing vigorously venting “black smoker” hydrothermal fluids (329 °C, or 624 °F) that are dark gray to black due to rapid precipitation of iron, copper, and zinc sulfide minerals as the hot water mixes with cold bottom waters.

Was this page helpful?