Skip to main content

Geochemistry

Activities support research and method development for specialized and contract analyses, including running several laboratories, characterizing natural water chemistry and the processes controlling water-rock interactions, fate/transport of metals and other contaminants in ground and surface waters, and constraining processes that form critical resource deposits.

Filter Total Items: 23

Research Chemistry

This project develops and maintains state-of-the-art analytical laboratories, expertise, and methods for a broad range of elemental and mineralogical analyses in support of the research priorities of the Mineral Resources Program, USGS, and DOI.
link

Research Chemistry

This project develops and maintains state-of-the-art analytical laboratories, expertise, and methods for a broad range of elemental and mineralogical analyses in support of the research priorities of the Mineral Resources Program, USGS, and DOI.
Learn More

Isotope and Chemical Methods for Mineral and Geoenvironmental Assessments and Support of USGS Science Strategy

This Project integrates several geochemical tools—stable isotope geochemistry, noble gas geochemistry, active gas geochemistry, single fluid inclusion chemistry, and fluid inclusion solute chemistry—in studies of the processes that form mineral deposits and the processes that disrupt them during mining or natural weathering. Research is directed toward fundamental scientific questions or, in...
link

Isotope and Chemical Methods for Mineral and Geoenvironmental Assessments and Support of USGS Science Strategy

This Project integrates several geochemical tools—stable isotope geochemistry, noble gas geochemistry, active gas geochemistry, single fluid inclusion chemistry, and fluid inclusion solute chemistry—in studies of the processes that form mineral deposits and the processes that disrupt them during mining or natural weathering. Research is directed toward fundamental scientific questions or, in...
Learn More

National Geochemical Database

The National Geochemical Database project assembles, reformats, corrects, and archives historical data obtained from the geochemical analysis of millions of geologic samples collected for USGS studies. These data, representing hundreds of millions of dollars' worth of USGS research, are provided to USGS researchers; other Federal agencies; State Geological Surveys and Environmental Protection...
link

National Geochemical Database

The National Geochemical Database project assembles, reformats, corrects, and archives historical data obtained from the geochemical analysis of millions of geologic samples collected for USGS studies. These data, representing hundreds of millions of dollars' worth of USGS research, are provided to USGS researchers; other Federal agencies; State Geological Surveys and Environmental Protection...
Learn More

Metal Transport in Mineralized Mountain Watersheds

The central objective of this project is to develop a greater understanding of deep bedrock groundwater circulation and its contribution to surface water metal loads in mineralized mountain blocks composed of sedimentary rocks. This work is being performed in cooperation with Lawrence Berkeley National Laboratory as part of a broader research program aimed at understanding processes controlling...
link

Metal Transport in Mineralized Mountain Watersheds

The central objective of this project is to develop a greater understanding of deep bedrock groundwater circulation and its contribution to surface water metal loads in mineralized mountain blocks composed of sedimentary rocks. This work is being performed in cooperation with Lawrence Berkeley National Laboratory as part of a broader research program aimed at understanding processes controlling...
Learn More

Integrated Hyperspectral, Geophysical and Geochemical Studies of Yellowstone National Park Hydrothermal Systems

We are researching the subsurface groundwater flow systems in Yellowstone and the relation of these systems to understanding the regional movement of water in a volcanic center. New geophysical data will be integrated with existing data sets from hyperspectral data from Yellowstone's thermal areas and thermal water geochemistry to help define regionally extensive mineral assemblages, the evolution...
link

Integrated Hyperspectral, Geophysical and Geochemical Studies of Yellowstone National Park Hydrothermal Systems

We are researching the subsurface groundwater flow systems in Yellowstone and the relation of these systems to understanding the regional movement of water in a volcanic center. New geophysical data will be integrated with existing data sets from hyperspectral data from Yellowstone's thermal areas and thermal water geochemistry to help define regionally extensive mineral assemblages, the evolution...
Learn More

Development of USGS Geochemical Reference Materials

The project focus was the development of traditional and microanalytical reference materials that support USGS geochemical investigations. Development of new microanalytical reference materials allows USGS scientists and outside customers to examine a greater range of sample types while maintaining a high degree of data reliability.
link

Development of USGS Geochemical Reference Materials

The project focus was the development of traditional and microanalytical reference materials that support USGS geochemical investigations. Development of new microanalytical reference materials allows USGS scientists and outside customers to examine a greater range of sample types while maintaining a high degree of data reliability.
Learn More

Salmon River Mountains Legacy Mining Studies

The objective of this study is to characterize the regional impact of legacy mining in the context of framework geology for the Salmon Mountains in central Idaho. This objective is addressed through three interrelated tasks: 1) framework geology, 2) watershed biogeochemical processes, and 3) characterization of trace metals in colloids (fine particles suspended in water).
link

Salmon River Mountains Legacy Mining Studies

The objective of this study is to characterize the regional impact of legacy mining in the context of framework geology for the Salmon Mountains in central Idaho. This objective is addressed through three interrelated tasks: 1) framework geology, 2) watershed biogeochemical processes, and 3) characterization of trace metals in colloids (fine particles suspended in water).
Learn More

Multi-scale Screening Techniques for Legacy Mine Land (LML) Sites Using Data Mining and Site-specific Studies in the Western U.S.

The main goal of this project is to provide a science-based approach for screening legacy mine land (LML) sites for remediation and identifying watersheds where relatively low-cost restoration efforts may yield substantial improvements to stream water quality. We are combing analysis of multiple existing regional data coverages with focused field studies to develop a protocol that land managers...
link

Multi-scale Screening Techniques for Legacy Mine Land (LML) Sites Using Data Mining and Site-specific Studies in the Western U.S.

The main goal of this project is to provide a science-based approach for screening legacy mine land (LML) sites for remediation and identifying watersheds where relatively low-cost restoration efforts may yield substantial improvements to stream water quality. We are combing analysis of multiple existing regional data coverages with focused field studies to develop a protocol that land managers...
Learn More

Processes Controlling Fate and Transport of Metals Associated with Legacy Mining

The project goal is to investigate best approaches to integrating conceptual, (bio)geochemical, hydrological, and toxicological models to improve prediction of metal mobility and remediation at legacy mine land (LML) sites.
link

Processes Controlling Fate and Transport of Metals Associated with Legacy Mining

The project goal is to investigate best approaches to integrating conceptual, (bio)geochemical, hydrological, and toxicological models to improve prediction of metal mobility and remediation at legacy mine land (LML) sites.
Learn More

Geochemical Signatures and Environmental Impacts of Ore and Trace Mineralization in the Southern Midcontinent

The overall project objective is a comprehensive analysis of the natural and anthropogenic consequences of extensive ore and trace mineralization in the southern midcontinent of the U.S. with a focus on Missouri. This will be conducted at two scales: 1) landscape and 2) process-level.1) Landscape scale using geospatial and machine learning techniques to combine multiple geochemical and geologic...
link

Geochemical Signatures and Environmental Impacts of Ore and Trace Mineralization in the Southern Midcontinent

The overall project objective is a comprehensive analysis of the natural and anthropogenic consequences of extensive ore and trace mineralization in the southern midcontinent of the U.S. with a focus on Missouri. This will be conducted at two scales: 1) landscape and 2) process-level.1) Landscape scale using geospatial and machine learning techniques to combine multiple geochemical and geologic...
Learn More

Analytical Chemistry

The USGS Mineral Resources Program and other USGS scientists need specialized routine analysis in order to conduct their research. The Analytical Chemistry project facilitates the ability of USGS scientists to obtain needed analyses.
link

Analytical Chemistry

The USGS Mineral Resources Program and other USGS scientists need specialized routine analysis in order to conduct their research. The Analytical Chemistry project facilitates the ability of USGS scientists to obtain needed analyses.
Learn More

Trace Metal Mobility in the Yellow Pine Mining District, Idaho

The study objective is to conduct an integrated, interdisciplinary study on source areas, biogeochemical transformations, and physical and biological pathways for trace metal transport in a tributary of the Snake River watershed, focusing on the Sugar Creek watershed. The historical Cinnabar mercury mine site is at the headwaters of Cinnabar Creek, a tributary to Sugar Creek. This integrated...
link

Trace Metal Mobility in the Yellow Pine Mining District, Idaho

The study objective is to conduct an integrated, interdisciplinary study on source areas, biogeochemical transformations, and physical and biological pathways for trace metal transport in a tributary of the Snake River watershed, focusing on the Sugar Creek watershed. The historical Cinnabar mercury mine site is at the headwaters of Cinnabar Creek, a tributary to Sugar Creek. This integrated...
Learn More