An earthquake can trigger a landslide along the ocean floor, which can then set off a tsunami. Without modern, high-resolution imaging of the seafloor, many historical slides and threats from future slides remain undetected.
Using equipment that stretched several kilometers behind their vessels, the petroleum industry ran 3D seismic surveys off Santa Barbara in the 1990s. When they released their data to the public in 2015, USGS geophysicist Jared Kluesner could finally sift through the values to create a 3D view of the Earth extending thousands of meters beneath the seafloor. This view was a vast improvement over the paper-thin slices of Earth’s crust that are constructed from 2D surveys. Tens of gigabytes of data required months of number crunching and the largest monitor that could fit on Kluesner’s desk. His “geologic Hubble telescope” allowed him to virtually explore kilometers below the seafloor in any direction, map faults, and study how fluid moves through the Earth’s crust.
Issue
Underwater landslides threaten offshore structures such as seafloor pipelines, cables, and equipment for oil and gas exploration. These landslides can also trigger tsunamis that endanger coastal communities. A 1998 earthquake in Papua New Guinea triggered a landslide on the seafloor, which generated a 10-meter high tsunami that killed more than 2,000 people along the nearest shoreline.
Until recently, scientists had not looked closely for similar landslides off the Southern California coast. Previously known slides in the region are the Goleta slide in Santa Barbara Channel and the Palos Verdes debris avalanche off Palos Verdes Peninsula, each less than half a cubic kilometer in size. Underwater landslides might have triggered significant tsunamis in Santa Barbara in 1812 and Point Arguello in 1927. But inadequate seafloor mapping in the area limits what scientists know about the size, distribution, and age of potential tsunami-generated landslides. Numerous banks and ridges beneath the waters off the Southern California coast could hide undiscovered slides.
As an example, a 2010 NOAA cruise to map the seafloor around the Santa Cruz Basin 50 to 80 kilometers from Ventura, accidentally discovered several underwater landslide scars. The scars show considerable variation in appearance, suggesting a wide range of ages for individual slides. The landslides range in size from less than 1 to more than 50 square kilometers, making this one of the largest underwater landslide complexes found off Southern California.
What the USGS is doing
To understand the potential tsunami hazards that underwater landslides pose to Southern California, the USGS led a high-resolution 2D seismic study in Santa Cruz Basin and nearby basins in November 2014. This work should help identify what makes slopes unstable, what may trigger them to slide (active faults, sediment buildup, fluid channels beneath the seabed), and what potential exists for slides to generate local tsunamis.
To dig further into the complexities of these landslides, USGS researchers used advanced techniques to analyze 3D seismic data collected by the oil industry. These data from near the Goleta slide in Santa Barbara Basin help USGS scientists make connections between underwater landslides and natural events that make a slope fail. Researchers compare lower resolution 3D seismic images with higher resolution 2D data to link the 3D data to the landslides seen on the seafloor.
USGS scientists continue to collect more seafloor mapping data looking for changes to the seafloor and seafloor seeps, which can indicate mounting fluid pressure that could trigger landslides.
What the USGS has learned
Recent research within Santa Cruz Basin shows landslides ranging from 6,000 to 8,000 years old.
New seafloor data revealed the Del Mar slide, just north of San Diego. The steep slope here has landslides more than 6 kilometers wide, about 8 kilometers west of Del Mar, along the edge of the continental shelf. Seismic data show the slide deposit is up to 20 meters thick and extends nearly 10 kilometers to the west. Data also reveal older slide deposits buried beneath the seafloor. A sediment core taken near the toe of the slide indicates it may be about 14,000 to16,000 years old, and that slides could recur here on a timescale of tens of thousands of years.
It’s likely that more offshore landslides are yet to be discovered.
Below are the current studies of the “U.S. West Coast and Alaska Marine Geohazards” Project.
U.S. West Coast and Alaska Marine Geohazards
Seafloor Faults off Southern California
Offshore Faults along Central and Northern California
Underwater Landslides off Southern California
Earthquake Hazards in Southeastern Alaska
Below are data or web applications associated with this project.
Reprocessed legacy seismic-reflection data from USGS field activity B-1-72-SC collected offshore central and southern California
Quaternary faults offshore of California
Multichannel minisparker and chirp seismic reflection data of USGS field activity 2016-616-FA collected in the Catalina Basin offshore southern California in February 2016
Multibeam bathymetry and acoustic-backscatter data collected in 2016 in Catalina Basin, southern California and merged multibeam bathymetry datasets of the northern portion of the Southern California Continental Borderland
Below are publications associated with this project.
Morphology, structure, and kinematics of the San Clemente and Catalina faults based on high-resolution marine geophysical data, southern California Inner Continental Borderland
Structural controls on slope failure within the western Santa Barbara Channel based on 2D and 3D seismic imaging
Submarine canyons, slope failures and mass transport processes in southern Cascadia
Discovery of an extensive deep-sea fossil serpulid reef associated with a cold seep, Santa Monica Basin, California
The Santa Cruz Basin submarine landslide complex, southern California: Repeated failure of uplifted basin sediment
The Santa Cruz Basin (SCB) is one of several fault-bounded basins within the California Continental Borderland that has drawn interest over the years for its role in the tectonic evolution of the region, but also because it contains a record of a variety of modes of sedimentary mass transport (i.e., open slope vs. canyon-confined systems). Here, we present a suite of new high-resolution marine geo
The tectonically controlled San Gabriel Channel–Lobe Transition Zone, Catalina Basin, Southern California Borderland
- Overview
An earthquake can trigger a landslide along the ocean floor, which can then set off a tsunami. Without modern, high-resolution imaging of the seafloor, many historical slides and threats from future slides remain undetected.
Jared Kluesner displays a 3D view of seismic data collected off Santa Barbara. This visualization helps him analyze the Earth’s layers from the seafloor (rainbow-colored surface) to several kilometers below (slices extending down from the colored surface). Using equipment that stretched several kilometers behind their vessels, the petroleum industry ran 3D seismic surveys off Santa Barbara in the 1990s. When they released their data to the public in 2015, USGS geophysicist Jared Kluesner could finally sift through the values to create a 3D view of the Earth extending thousands of meters beneath the seafloor. This view was a vast improvement over the paper-thin slices of Earth’s crust that are constructed from 2D surveys. Tens of gigabytes of data required months of number crunching and the largest monitor that could fit on Kluesner’s desk. His “geologic Hubble telescope” allowed him to virtually explore kilometers below the seafloor in any direction, map faults, and study how fluid moves through the Earth’s crust.
Issue
Large submarine slides off southern California (outlined in small white dots). Low-resolution bathymetry shown in light grey (approximately 100 meters/pixel). High-resolution bathymetry shown in darker grey (less than 20 meters/pixel). Underwater landslides threaten offshore structures such as seafloor pipelines, cables, and equipment for oil and gas exploration. These landslides can also trigger tsunamis that endanger coastal communities. A 1998 earthquake in Papua New Guinea triggered a landslide on the seafloor, which generated a 10-meter high tsunami that killed more than 2,000 people along the nearest shoreline.
Until recently, scientists had not looked closely for similar landslides off the Southern California coast. Previously known slides in the region are the Goleta slide in Santa Barbara Channel and the Palos Verdes debris avalanche off Palos Verdes Peninsula, each less than half a cubic kilometer in size. Underwater landslides might have triggered significant tsunamis in Santa Barbara in 1812 and Point Arguello in 1927. But inadequate seafloor mapping in the area limits what scientists know about the size, distribution, and age of potential tsunami-generated landslides. Numerous banks and ridges beneath the waters off the Southern California coast could hide undiscovered slides.
As an example, a 2010 NOAA cruise to map the seafloor around the Santa Cruz Basin 50 to 80 kilometers from Ventura, accidentally discovered several underwater landslide scars. The scars show considerable variation in appearance, suggesting a wide range of ages for individual slides. The landslides range in size from less than 1 to more than 50 square kilometers, making this one of the largest underwater landslide complexes found off Southern California.
What the USGS is doing
To understand the potential tsunami hazards that underwater landslides pose to Southern California, the USGS led a high-resolution 2D seismic study in Santa Cruz Basin and nearby basins in November 2014. This work should help identify what makes slopes unstable, what may trigger them to slide (active faults, sediment buildup, fluid channels beneath the seabed), and what potential exists for slides to generate local tsunamis.
To dig further into the complexities of these landslides, USGS researchers used advanced techniques to analyze 3D seismic data collected by the oil industry. These data from near the Goleta slide in Santa Barbara Basin help USGS scientists make connections between underwater landslides and natural events that make a slope fail. Researchers compare lower resolution 3D seismic images with higher resolution 2D data to link the 3D data to the landslides seen on the seafloor.
USGS scientists continue to collect more seafloor mapping data looking for changes to the seafloor and seafloor seeps, which can indicate mounting fluid pressure that could trigger landslides.
Computer image looking west from shore across the Santa Cruz Basin. At least 11 separate landslides have slumped from the side of Santa Rosa Ridge, which was pushed up by the fault movement that created Santa Cruz Basin. What the USGS has learned
Recent research within Santa Cruz Basin shows landslides ranging from 6,000 to 8,000 years old.
New seafloor data revealed the Del Mar slide, just north of San Diego. The steep slope here has landslides more than 6 kilometers wide, about 8 kilometers west of Del Mar, along the edge of the continental shelf. Seismic data show the slide deposit is up to 20 meters thick and extends nearly 10 kilometers to the west. Data also reveal older slide deposits buried beneath the seafloor. A sediment core taken near the toe of the slide indicates it may be about 14,000 to16,000 years old, and that slides could recur here on a timescale of tens of thousands of years.
It’s likely that more offshore landslides are yet to be discovered.
A 3D animation of seismic reflection data takes viewers through the layers of a chunk of Earth below the seafloor. Different colors represent different layers of sediment and rock. Research vessel (R/V) Marcus G. Langseth, operated by Lamont-Doherty Earth Observatory's Office of Marine Operations, can deploy several kilometers of cable to collect seismic data from beneath the seafloor. - Science
Below are the current studies of the “U.S. West Coast and Alaska Marine Geohazards” Project.
U.S. West Coast and Alaska Marine Geohazards
Marine geohazards are sudden and extreme events beneath the ocean that threaten coastal populations. Such underwater hazards include earthquakes, volcanic eruptions, landslides, and tsunamis.ByNatural Hazards Mission Area, Coastal and Marine Hazards and Resources Program, Pacific Coastal and Marine Science Center, 3-D CT Core Imaging Laboratory, Core Preparation and Analysis Laboratory and Sample Repositories, Big Sur Landslides, Deep Sea Exploration, Mapping and Characterization, Subduction Zone ScienceSeafloor Faults off Southern California
More than 22 million people live along Southern California’s coast, and many more migrate there every year. Faults and earthquake threats in this region have been heavily studied on land. USGS aims to boost our knowledge about faults on the seafloor, so they can be included in hazard assessments.Offshore Faults along Central and Northern California
From Point Conception to Cape Mendocino, seafloor faults have been, in the past, mapped in varying ways and without enough detail to assess their earthquake potential. To provide this important information, USGS uses advanced technology to image offshore faults that could trigger devastating earthquakes near densely populated areas and a nuclear power plant.Underwater Landslides off Southern California
An earthquake can trigger a landslide along the ocean floor, which can then set off a tsunami. Without modern, high-resolution imaging of the seafloor, many historical slides and threats from future slides remain undetected.Earthquake Hazards in Southeastern Alaska
Over the last 100 years, the Queen Charlotte-Fairweather fault system has produced large-magnitude earthquakes affecting both Canada and the U.S. To fill in missing details about its offshore location and structure, USGS uses sophisticated techniques to truly understand the fault’s hazard potential. - Data
Below are data or web applications associated with this project.
Reprocessed legacy seismic-reflection data from USGS field activity B-1-72-SC collected offshore central and southern California
Seismic-reflection data were collected offshore central and southern California in 1972 aboard the USNS Bartlett (USGS Field Activity B-1-72-SC). In 2021 these legacy data were reprocessed to improve accuracy and geologic resolvability of Californias continental margin. The effort to rescue and reprocess these legacy seismic-reflection data profiles was supported by Pacific Gas and Electric (PG&E)Quaternary faults offshore of California
A comprehensive map of Quaternary faults has been generated for offshore of California. The Quaternary fault map includes mapped geometries and attribute information for offshore fault systems located in California State and Federal waters. The polyline shapefile and matching KML file have been compiled from previously published mapping where relatively dense, high-resolution marine geophysical daMultichannel minisparker and chirp seismic reflection data of USGS field activity 2016-616-FA collected in the Catalina Basin offshore southern California in February 2016
This data release contains 25 multichannel minisparker seismic reflection (MCS) profiles and 41 chirp sub-bottom profiles that were collected in February of 2016 from the Catalina Basin offshore southern California by the U.S. Geological Survey Pacific and Coastal Marine Science Center in cooperation with the University of Washington. Data were collected aboard the University of Washington's R/V TMultibeam bathymetry and acoustic-backscatter data collected in 2016 in Catalina Basin, southern California and merged multibeam bathymetry datasets of the northern portion of the Southern California Continental Borderland
In February 2016 the University of Washington in cooperation with the U.S. Geological Survey, Pacific Coastal and Marine Science Center (USGS, PCMSC) collected multibeam bathymetry and acoustic-backscatter data in and near the Catalina Basin, southern California aboard the University of Washington's Research Vessel Thomas G. Thompson. Data was collected using a Kongsberg EM300 multibeam echosounde - Publications
Below are publications associated with this project.
Morphology, structure, and kinematics of the San Clemente and Catalina faults based on high-resolution marine geophysical data, southern California Inner Continental Borderland
Catalina Basin, located within the southern California Inner Continental Borderland (ICB), is traversed by two active submerged fault systems that are part of the broader North America-Pacific plate boundary: the San Clemente fault (along with a prominent splay, the Kimki fault) and the Catalina fault. Previous studies have suggested that the San Clemente fault (SCF) may be accommodating up to halAuthorsMaureen A. L. Walton, Daniel S. Brothers, James E. Conrad, Katherine L. Maier, Emily C. Roland, Jared W. Kluesner, Peter DartnellStructural controls on slope failure within the western Santa Barbara Channel based on 2D and 3D seismic imaging
The Santa Barbara Channel, offshore California, contains several submarine landslides and ample evidence for incipient failure. This region hosts active thrust and reverse faults that accommodate several mm/yr of convergence, yet the relationships between tectonic deformation and slope failure remain unclear. We present 3‐D and 2‐D multichannel seismic reflection (MCS) data sets, multibeam bathymeAuthorsJared W. Kluesner, Daniel S. Brothers, Alexis L Wright, Samuel Y. JohnsonSubmarine canyons, slope failures and mass transport processes in southern Cascadia
The marine turbidite record along the southern Cascadia Subduction Zone has been used to interpret paleoseismicity and suggest a shorter recurrence interval for large (>M7) earthquakes along this portion of the margin; however, the sources and pathways of these turbidity flows are poorly constrained. We examine the spatial distribution of sediment storage, downslope transport, and slope failures aAuthorsJenna C. Hill, Janet Watt, Daniel S. Brothers, Jared W. KluesnerDiscovery of an extensive deep-sea fossil serpulid reef associated with a cold seep, Santa Monica Basin, California
Multi-beam mapping of the Santa Monica Basin in the eastern Pacific has revealed the existence of a number of elevated bathymetric features, or mounds, harboring cold seep communities. During 2013-2014, mounds at ~600 m water depth were observed for the first time and sampled by Monterey Bay Aquarium Research Institute’s ROV Doc Ricketts. Active cold seeps were found, but surprisingly one of theseAuthorsMagdalena N Georgieva, Charles K. Paull, Crispin TS Little, Mary McGann, Diana Sahy, Daniel Condon, Lonny Lundsten, Jack Pewsey, David W Caress, Robert C VrijenhoekThe Santa Cruz Basin submarine landslide complex, southern California: Repeated failure of uplifted basin sediment
The Santa Cruz Basin (SCB) is one of several fault-bounded basins within the California Continental Borderland that has drawn interest over the years for its role in the tectonic evolution of the region, but also because it contains a record of a variety of modes of sedimentary mass transport (i.e., open slope vs. canyon-confined systems). Here, we present a suite of new high-resolution marine geo
AuthorsDaniel S. Brothers, Katherine L. Maier, Jared W. Kluesner, James E. Conrad, Jason ChaytorThe tectonically controlled San Gabriel Channel–Lobe Transition Zone, Catalina Basin, Southern California Borderland
High-resolution geophysical data across the Catalina Basin, offshore southern California, USA, reveal a complex channel–lobe transition zone (CLTZ) and provide an opportunity to characterize an entire seafloor CLTZ in a tectonically active and confined-basin setting. The seafloor morphology, distribution of depositional and erosional features, and location of depocenters in the CLTZ are controlledAuthorsKatherine L. Maier, Emily C. Roland, Maureen A. L. Walton, James E. Conrad, Daniel S. Brothers, Peter Dartnell, Jared W. Kluesner