An official website of the United States government
Here's how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock () or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
The microbial community on coral reefs is generally underappreciated given the ubiquity, abundance, complexity, and formative role these prokaryotes serve in the metabolic and chemical processes on reefs. We use microbiological and metagenomic techniques to decipher the roles the microbial community are playing in processes such as coral disease, submarine groundwater discharge, calcification, and...
The microbial community on coral reefs is generally underappreciated given the ubiquity, abundance, complexity, and formative role these prokaryotes serve in the metabolic and chemical processes on reefs. We use microbiological and metagenomic techniques to decipher the roles the microbial community are playing in processes such as coral disease, submarine groundwater discharge, calcification, and...
The coral microbial ecology group has an active research program identifying and characterizing the microbial associates of both tropical and cold-water (deep-sea) corals and their surrounding habitat. Current projects focus on coral disease dynamics, bacterial diversity, and using metagenomics to elucidate the functional roles of coral microbes.
The coral microbial ecology group has an active research program identifying and characterizing the microbial associates of both tropical and cold-water (deep-sea) corals and their surrounding habitat. Current projects focus on coral disease dynamics, bacterial diversity, and using metagenomics to elucidate the functional roles of coral microbes.
This project uses amplicon sequencing, and functional microarrays to examine the microbiomes of several deep-sea coral species, with priority given to species that are also of interest to the population genetics group: Desmophyllum dianthus, Lophelia pertusa, Enallopsammia sp., and Acanthogorgia sp. The project also uses metagenomics to survey benthic habitats including coral mounds, cold seeps...
DISCOVRE - Diversity, Systematics and Connectivity of Vulnerable Reef Ecosystems Project
This project uses amplicon sequencing, and functional microarrays to examine the microbiomes of several deep-sea coral species, with priority given to species that are also of interest to the population genetics group: Desmophyllum dianthus, Lophelia pertusa, Enallopsammia sp., and Acanthogorgia sp. The project also uses metagenomics to survey benthic habitats including coral mounds, cold seeps...
The specific objectives of this project are to identify and describe the processes that are important in determining rates of coral-reef construction. How quickly the skeletons of calcifying organisms accumulate to form massive barrier-reef structure is determined by processes of both construction (how fast organisms grow and reproduce) and destruction (how fast reefs break down by mechanical...
The specific objectives of this project are to identify and describe the processes that are important in determining rates of coral-reef construction. How quickly the skeletons of calcifying organisms accumulate to form massive barrier-reef structure is determined by processes of both construction (how fast organisms grow and reproduce) and destruction (how fast reefs break down by mechanical...
This project focused on developing algorithms for quantifying benthic habitat complexity from images, modeling the structural complexity of the seafloor, and using fluorescence signatures to classify coral reef habitats.
Advanced Remote Sensing Methods for Coastal Science and Management
This project focused on developing algorithms for quantifying benthic habitat complexity from images, modeling the structural complexity of the seafloor, and using fluorescence signatures to classify coral reef habitats.
It is critical to start measuring calcification rates in a systematic way now, particularly at subtropical latitudes where conditions fluctuate seasonally, so that we can understand how dynamic ocean conditions affect calcifying organisms today and predict possible changes in the future. We established a calcification monitoring network in the Florida Keys and have been measuring calcification...
It is critical to start measuring calcification rates in a systematic way now, particularly at subtropical latitudes where conditions fluctuate seasonally, so that we can understand how dynamic ocean conditions affect calcifying organisms today and predict possible changes in the future. We established a calcification monitoring network in the Florida Keys and have been measuring calcification...
This project documents paleoceanographic, climatic, and environmental changes in the Gulf of Mexico and adjacent land areas over the last 10,000 years. The paleoenvironmental data is used to determine rates of change in the past, and to better understand both the natural and anthropogenic factors that contribute to climate variability on inter-annual to millennial timescales.
Climate and Environmental Change in the Gulf of Mexico and Caribbean
This project documents paleoceanographic, climatic, and environmental changes in the Gulf of Mexico and adjacent land areas over the last 10,000 years. The paleoenvironmental data is used to determine rates of change in the past, and to better understand both the natural and anthropogenic factors that contribute to climate variability on inter-annual to millennial timescales.
We investigated coral disease processes and causes by characterizing microbial communities in diseased and healthy representatives of selected coral species both temporally and spatially by employing microarray technology. We tested the diagnostic potential of coral fluorescence for identifying disease-induced physiological stress.
We investigated coral disease processes and causes by characterizing microbial communities in diseased and healthy representatives of selected coral species both temporally and spatially by employing microarray technology. We tested the diagnostic potential of coral fluorescence for identifying disease-induced physiological stress.