Skip to main content
U.S. flag

An official website of the United States government


Filter Total Items: 2656

Using ground crack and very low frequency measurements to map the location of the June 2007 Father’s Day dike, Kīlauea Volcano

An intrusion into Kīlauea’s upper East Rift Zone during June 17–19, 2007, during the 1983–2018 Pu‘u‘ō‘ō eruption, led to widespread ground cracking and a small (approximately 1,525 cubic meters) eruption on the northeast flank of Kānenuiohamo, a cone about 6 kilometers upslope from Pu‘u‘ō‘ō. Transmitted and induced very low frequency (VLF) magnetic fields were measured with a handheld VLF receiver
Tim R. Orr, James P. Kauahikaua, Christina Heliker

Tracking magma pathways and surface faulting in the Southwest Rift Zone and the Koaʻe fault system (Kīlauea volcano, Hawai ‘i) using photogrammetry and structural observations

Volcanic islands are often subject to flank instability, resulting from a combination of magmatic intrusions along rift zones and gravitational spreading causing extensional faulting at the surface. Here, we study the Koaʻe fault system (KFS), located south of the summit caldera of Kīlauea volcano in Hawaiʻi, one of the most active volcanoes on Earth, prone to active faulting, episodic dike intrus
Stefano Mannini, Joël Ruch, Richard W. Hazlett, Drew T. Downs, Carolyn Parcheta, Steven P. Lundblad, James Anderson, Ryan L. Perroy, Nicolas Oestreicher

2021 Volcanic activity in Alaska and the Commonwealth of the Northern Mariana Islands—Summary of events and response of the Alaska Volcano Observatory

In 2021, the Alaska Volcano Observatory responded to eruptions, volcanic unrest or suspected unrest, increased seismicity, and other significant activity at 15 volcanic centers in Alaska and the Commonwealth of the Northern Mariana Islands. Eruptive activity in Alaska consisted of repeated small, ash-producing, phreatomagmatic explosions from Mount Young on Semisopochnoi Island; an explosion at Gr
Tim R. Orr, Hannah R. Dietterich, David Fee, Társilo Girona, Ronni Grapenthin, Matthew M. Haney, Matthew W. Loewen, John J. Lyons, John A. Power, Hans F. Schwaiger, David J. Schneider, Darren Tan, Liam Toney, Valerie K. Wasser, Christopher F. Waythomas

2020 Volcanic activity in Alaska—Summary of events and response of the Alaska Volcano Observatory

The Alaska Volcano Observatory responded to eruptions, volcanic unrest or suspected unrest, increased seismicity, and other significant activity at nine volcanic centers in Alaska in 2020. The most notable volcanic activity in 2020 was an eruption of Shishaldin Volcano, which produced lava flows, lahars, and ash. Mount Cleveland had one small ash-producing eruption in June but was quiet thereafter
Tim R. Orr, Cheryl Cameron, Hannah R. Dietterich, Matthew W. Loewen, Taryn Lopez, John J. Lyons, Jenny Nakai, John A. Power, Cheryl Searcy, Gabrielle Tepp, Christopher F. Waythomas

Versatile modeling of deformation (VMOD) inversion framework: Application to 20 years of observations at Westdahl Volcano and Fisher Caldera, Alaska, US

We developed an open source, extensible Python-based framework, that we call the Versatile Modeling of Deformation (VMOD), for forward and inverse modeling of crustal deformation sources. VMOD abstracts from specific source model implementations, data types and inversion methods. We implement the most common geodetic source models which can be combined to model and analyze multi-source deformation
Mario Angarita, Ronni Grapenthin, Scott Henderson, Michael S Christoffersen, Kyle R. Anderson

Pre-existing ground cracks as lava flow pathways at Kīlauea in 2014

In 2014, the Pāhoa lava flow at Kīlauea, on the Island of Hawaiʻi (USA), entered a string of pre-existing meter-width ground cracks in the volcano’s East Rift Zone. The ground cracks transported lava below the surface in a direction discordant to the slope of the landscape. The cracks, which were 100s of meters long and 10s to 100s of meters deep, also widened by up to several meters as they fille
T. Orr, Edward W. Llewellin, Kyle R. Anderson, Matthew R. Patrick

Olivine diffusion constrains months-scale magma transport within Kīlauea volcano’s summit reservoir system prior to the 2020 eruption

The unprecedented 2018 summit collapse at Kīlauea and subsequent 2020–2021 eruption within the newly deepened Halema‘uma‘u Crater provide an unparalleled opportunity to understand how collapse events impact a volcano’s shallow reservoir system and magmatic processes. Glass and olivine from tephra ejected by lava fountains and several explosions on 20–21 December, within a few hours of the 2020 eru
Kendra J. Lynn, Patricia Nadeau, Dawn Catherine Sweeney Ruth, Jefferson Chang, Peter Dotray, Ingrid Johanson

The geochemistry of continental hydrothermal systems

Hydrothermal systems on the continents are of great significance because they are primary sources of economically important metals and geothermal energy, they are tourist attractions, they support bathing and health resorts, and they host extreme life forms. Research on hot springs and their deposits provide clues to early life on Earth and possibly on Mars and have led to major breakthroughs in b
Shaul Hurwitz, Andri Stefánsson, Everett L. Shock, Barbara I. Kleine

USGS and social media user dialogue and sentiment during the 2018 eruption of Kīlauea Volcano, Hawaii

Responsive and empathic communication by scientists is critical for building trust and engagement with communities, which, in turn, promotes receptiveness toward authoritative hazard information during times of crisis. The 2018 eruption of Hawai‘i's Kīlauea Volcano was the first volcanic crisis event in which communication via the U.S. Geological Survey (USGS) social media group, “USGS Volcanoes,”
Robert T. Goldman, Sara McBride, Wendy K. Stovall, David Damby

Lava flow impacts on the built environment: Insights from a new global dataset

The recent destruction of thousands of homes by lava flows from La Palma volcano, Canary Islands, and Nyiragongo volcano, Democratic Republic of Congo, serves as a reminder of the devastating impact that lava flows can have on communities living in volcanically active regions. Damage to buildings and infrastructure can have widespread and long-lasting effects on rehabilitation and livelihoods. Our
Elinor S. Meredith, Susanna F. Jenkins, Josh L. Hayes, David Lallemand, Natalia Irma Deligne, Natalie Teng Rui Xue

Stress-driven recurrence and precursory moment-rate surge in caldera collapse earthquakes

Predicting the recurrence times of earthquakes and understanding the physical processes that immediately precede them are two outstanding problems in seismology. Although geodetic measurements record elastic strain accumulation, most faults have recurrence intervals longer than available measurements. Foreshocks provide the principal observations of processes before mainshocks, but variability bet
Paul Segall, Mark V. Matthews, David R. Shelly, Taiyi Wang, Kyle R. Anderson

Insights into magma storage depths and eruption controls at Kīlauea Volcano during explosive and effusive periods of the past 500 years based on melt and fluid inclusions

Kīlauea Volcano experiences centuries-long cycles of explosive and effusive eruptive behavior, but the relation, if any, between these eruptive styles and changing conditions in the magma plumbing system remains poorly known. We analyze olivine-hosted melt and fluid inclusions to determine magma storage depths during the explosive-era Keanakākoʻi Tephra eruptions (∼1500–1840 CE) and compare these
Allan Lerner, D. Matthew Sublett Jr., Paul J. Wallace, Christina Cauley, Robert J. Bodnar