How far did the ash from Mount St. Helens travel?

The May 18, 1980 eruptive column at Mount St. Helens fluctuated in height through the day, but the eruption subsided by late afternoon. By early May 19th, the eruption had stopped. By that time the ash cloud had spread to the central United States.

Two days later, even though the ash cloud had become more diffuse, fine ash was detected by systems used to monitor air pollution in several cities of the northeastern United States. Some of the ash drifted around the globe within about 2 weeks.

Related Content

Filter Total Items: 18
February 22, 2018

PubTalk 2/2018 — USGS Cascades Volcano Observatory

Title: The USGS Cascades Volcano Observatory - Research, monitoring, and the science of preparing society for low-probability, high-consequence events

  • Volcanoes in the Cascade Range erupt twice per century on average, with eruptions often lasting for years.
  • Although eruptions are generally not as high-consequence as large earthquakes, they are still
...
Attribution: Natural Hazards
May 26, 2016

Forecasting Ashfall Impacts from a Yellowstone Supereruption

  • Yellowstone is one of a few dozen volcanoes on earth capable of "supereruptions" that expel more than 1,000 cubic km of ash and debris.
  • The plumes from such eruptions can rise 30 to 50 km into the atmosphere, three to five times as high as most jets fly.
  • Yellowstone has produced three supereruptions in the past 2.1 million years. The most recent was
...
Mount St. Helens before and after 1980 eruption
May 9, 2016

Mount St. Helens before and after 1980 eruption

Left: Before the eruption of May 18, 1980, Mount St. Helens' elevation was 2,950 m (9,677 ft). View from the west, Mount Adams in distance. S. Fork Toutle River is valley in center of photo.

Right: Mount St. Helens soon after the May 18, 1980 eruption, as viewed from Johnston's Ridge.

video thumbnail: Volcano Hazards
July 30, 2012

Volcano Hazards

The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.

Video Sections:

  • Volcanoes: Monitoring Volcanoes
...
May 9, 2012

Volcano Web Shorts 6: Societal Impacts of Volcanism

USGS geologist, Angie Diefenbach, describes how she uses GIS, (Geographic Information Systems) software to study volcanic eruptions and their impacts on society.

May 9, 2012

Volcano Web Shorts 5 - Volcanic Ash Impacts

Volcanic ash is geographically the most widespread of all volcanic hazards. USGS geologist Larry Mastin describes how volcanic ash can disrupt lives many thousands of miles from an erupting volcano. The development of ash cloud models and ash cloud disruption to air traffic is highlighted.

May 9, 2012

Volcano Web Shorts 4 - Instruments

USGS technologist Rick LaHusen describes how the development and deployment of instruments plays a crucial role in mitigating volcanic hazards.

video thumbnail: Mount St. Helens: May 18, 1980
May 10, 2010

Mount St. Helens: May 18, 1980

USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.

video thumbnail: Mount St. Helens: A Catalyst for Change
May 10, 2010

Mount St. Helens: A Catalyst for Change

The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.

December 31, 2006

Mount St. Helens 2004-2008 Eruption: A Volcano Reawakens

Mount St. Helens reawakened in late September 2004. Small magnitude earthquakes beneath the 1980-1986 lava dome increased in frequency and size, and a growing welt formed on the southeast margin of the previous lava dome and nearby portions of Crater Glacier. On October 1, 2004, the first of several explosions shot a plume of volcanic ash and gases from a vent on the

...
December 31, 2004

Mount St. Helens eruption highlights: September 2004 - May 2005

Compilation video of significant events from the dome-building eruption at Mount St. Helens, from October 1, 2004 to March 15, 2005, including steam and ash eruptions, growth of lava spines, helicopter deployment of monitoring equipment, collection of lava samples, and FLIR thermal imaging of rock collapse on lava dome.

  1. Eruption of Mount St. Helens,  October 1
...