Title: The USGS Cascades Volcano Observatory - Research, monitoring, and the science of preparing society for low-probability, high-consequence events
How far did the ash from Mount St. Helens travel?
The May 18, 1980 eruptive column at Mount St. Helens fluctuated in height through the day, but the eruption subsided by late afternoon. By early May 19, the eruption had stopped. By that time, the ash cloud had spread to the central United States.
Two days later, even though the ash cloud had become more diffuse, fine ash was detected by systems used to monitor air pollution in several cities of the northeastern United States. Some of the ash drifted around the globe within about 2 weeks.
Learn more:
Related
How far would ash travel if Yellowstone had a large explosive eruption?
Knowledge about past eruptions of Yellowstone combined with mathematical models of volcanic ash dispersion help scientists determine where and how much ashfall will occur in possible future eruptions. During the three caldera-forming eruptions that occurred between 2.1 million and 640,000 years ago, tiny particles of volcanic ash covered much of the western half of North America. That ash was...
How much ash was there from the May 18, 1980 eruption of Mount St. Helens?
During the 9 hours of vigorous eruptive activity on May 18, 1980, about 540 million tons of ash from Mount St. Helens fell over an area of more than 22,000 square miles (57,000 square kilometers). The total volume of the ash before its compaction by rainfall was about 0.3 cubic mile (1.3 cubic kilometers), equivalent to an area the size of a football field piled about 150 miles (240 kilometers)...
Does ash ever erupt from Kīlauea Volcano?
Kīlauea Volcano is renowned for its relatively benign eruptions of fluid lava flows. Therefore, many people were surprised by the small explosions that occurred in Halema`uma`u Crater in 2008 and 2018, and even more surprised to learn that volcanic ash was being erupted from a new gas vent. However, ash emissions from Halema`uma`u Crater are part of the volcano's legacy. Kīlauea's summit has...
How high was Mount St. Helens before the May 18, 1980 eruption? How high was it after?
Before May 18, 1980, Mount St. Helens ' summit altitude of 9,677 feet (2,950 meters) made it only the fifth highest peak in Washington State. It stood out handsomely, however, from surrounding hills because it rose thousands of feet above them and had a perennial cover of ice and snow. The peak rose more than 5,000 feet (1,524 meters) above its base, where the lower flanks merge with adjacent...
How old is Mount St. Helens?
The eruptive history of Mount St. Helens began about 40,000 years ago with dacitic volcanism, which continued intermittently until about 2,500 years ago. This activity included numerous explosive eruptions over periods of hundreds to thousands of years, which were separated by apparent dormant intervals ranging in length from a few hundred to about 15,000 years. The range of rock types erupted by...
How would an eruption of Mount Rainier compare to the 1980 eruption of Mount St. Helens?
Eruptions of Mount Rainier usually produce much less volcanic ash than do eruptions at Mount St. Helens . However, owing to the volcano's great height and widespread cover of snow and glacier ice, eruption triggered debris flows ( lahars ) at Mount Rainier are likely to be much larger--and will travel a greater distance--than those at Mount St. Helens in 1980. Furthermore, areas at risk from...
What is the origin of the name "Mount St. Helens"?
Some Native Americans of the Pacific Northwest variously called Mount St. Helens 'lawilátɬa ', or 'one from whom smoke comes'. The volcano lawilátɬa is listed (as Lawetlat’la) on the National Register of Historic Places and acknowledged as a Traditional Cultural Property of significance to the Cowlitz Indian Tribe and Confederated Tribes and Bands of the Yakama Nation. The modern name, Mount St...
How many eruptions have there been in the Cascades during the last 4,000 years?
Eruptions in the Cascades have occurred at an average rate of one to two per century during the last 4,000 years. Future eruptions are certain. Learn more: Eruptions in the Cascade Range During the Past 4,000 Years USGS Cascades Volcano Observatory
Title: The USGS Cascades Volcano Observatory - Research, monitoring, and the science of preparing society for low-probability, high-consequence events
- Yellowstone is one of a few dozen volcanoes on earth capable of "supereruptions" that expel more than 1,000 cubic km of ash and debris.
- The plumes from such eruptions can rise 30 to 50 km into the atmosphere, three to five times as high as most jets fly.
- Yellowstone is one of a few dozen volcanoes on earth capable of "supereruptions" that expel more than 1,000 cubic km of ash and debris.
- The plumes from such eruptions can rise 30 to 50 km into the atmosphere, three to five times as high as most jets fly.
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
USGS technologist Rick LaHusen describes how the development and deployment of instruments plays a crucial role in mitigating volcanic hazards.
USGS technologist Rick LaHusen describes how the development and deployment of instruments plays a crucial role in mitigating volcanic hazards.
Volcanic ash is geographically the most widespread of all volcanic hazards. USGS geologist Larry Mastin describes how volcanic ash can disrupt lives many thousands of miles from an erupting volcano. The development of ash cloud models and ash cloud disruption to air traffic is highlighted.
Volcanic ash is geographically the most widespread of all volcanic hazards. USGS geologist Larry Mastin describes how volcanic ash can disrupt lives many thousands of miles from an erupting volcano. The development of ash cloud models and ash cloud disruption to air traffic is highlighted.
The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.
The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.
USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.
USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.
Mount St. Helens reawakened in late September 2004. Small magnitude earthquakes beneath the 1980-1986 lava dome increased in frequency and size, and a growing welt formed on the southeast margin of the previous lava dome and nearby portions of Crater Glacier.
Mount St. Helens reawakened in late September 2004. Small magnitude earthquakes beneath the 1980-1986 lava dome increased in frequency and size, and a growing welt formed on the southeast margin of the previous lava dome and nearby portions of Crater Glacier.
Compilation video of significant events from the dome-building eruption at Mount St. Helens, from October 1, 2004 to March 15, 2005, including steam and ash eruptions, growth of lava spines, helicopter deployment of monitoring equipment, collection of lava samples, and FLIR thermal imaging of rock collapse on lava dome.
Compilation video of significant events from the dome-building eruption at Mount St. Helens, from October 1, 2004 to March 15, 2005, including steam and ash eruptions, growth of lava spines, helicopter deployment of monitoring equipment, collection of lava samples, and FLIR thermal imaging of rock collapse on lava dome.
Mount St. Helens soon after the May 18, 1980 eruption, as viewed from Johnston's Ridge.
Mount St. Helens soon after the May 18, 1980 eruption, as viewed from Johnston's Ridge.
Eruptive activity at Mount St. Helens captured the world’s attention on May 18, 1980 when the largest historical landslide on Earth and a powerful explosion reshaped the volcano. A volcanic ash cloud spread across the US in 3 days, and encircled the Earth in 15 days.
Eruptive activity at Mount St. Helens captured the world’s attention on May 18, 1980 when the largest historical landslide on Earth and a powerful explosion reshaped the volcano. A volcanic ash cloud spread across the US in 3 days, and encircled the Earth in 15 days.
Lawetlat'la—Mount St. Helens—Land in transformation
A 40-year story of river sediment at Mount St. Helens
Ten ways Mount St. Helens changed our world—The enduring legacy of the 1980 eruption
Field trip guide to Mount St. Helens, Washington—Recent and ancient volcaniclastic processes and deposits
2018 update to the U.S. Geological Survey national volcanic threat assessment
When erupting, all volcanoes pose a degree of risk to people and infrastructure, however, the risks are not equivalent from one volcano to another because of differences in eruptive style and geographic location. Assessing the relative threats posed by U.S. volcanoes identifies which volcanoes warrant the greatest risk-mitigation efforts by the U.S. Geological Survey and its partners. This update
Field-trip guide to Mount St. Helens, Washington - An overview of the eruptive history and petrology, tephra deposits, 1980 pyroclastic density current deposits, and the crater
Mount St. Helens, 1980 to now—what’s going on?
30 cool facts about Mount St. Helens
Eruptions in the Cascade Range during the past 4,000 years
The Pleistocene eruptive history of Mount St. Helens, Washington, from 300,000 to 12,800 years before present
Geologic map of Mount St. Helens, Washington prior to the 1980 eruption
Pre-1980 eruptive history of Mount St. Helens, Washington
Related
How far would ash travel if Yellowstone had a large explosive eruption?
Knowledge about past eruptions of Yellowstone combined with mathematical models of volcanic ash dispersion help scientists determine where and how much ashfall will occur in possible future eruptions. During the three caldera-forming eruptions that occurred between 2.1 million and 640,000 years ago, tiny particles of volcanic ash covered much of the western half of North America. That ash was...
How much ash was there from the May 18, 1980 eruption of Mount St. Helens?
During the 9 hours of vigorous eruptive activity on May 18, 1980, about 540 million tons of ash from Mount St. Helens fell over an area of more than 22,000 square miles (57,000 square kilometers). The total volume of the ash before its compaction by rainfall was about 0.3 cubic mile (1.3 cubic kilometers), equivalent to an area the size of a football field piled about 150 miles (240 kilometers)...
Does ash ever erupt from Kīlauea Volcano?
Kīlauea Volcano is renowned for its relatively benign eruptions of fluid lava flows. Therefore, many people were surprised by the small explosions that occurred in Halema`uma`u Crater in 2008 and 2018, and even more surprised to learn that volcanic ash was being erupted from a new gas vent. However, ash emissions from Halema`uma`u Crater are part of the volcano's legacy. Kīlauea's summit has...
How high was Mount St. Helens before the May 18, 1980 eruption? How high was it after?
Before May 18, 1980, Mount St. Helens ' summit altitude of 9,677 feet (2,950 meters) made it only the fifth highest peak in Washington State. It stood out handsomely, however, from surrounding hills because it rose thousands of feet above them and had a perennial cover of ice and snow. The peak rose more than 5,000 feet (1,524 meters) above its base, where the lower flanks merge with adjacent...
How old is Mount St. Helens?
The eruptive history of Mount St. Helens began about 40,000 years ago with dacitic volcanism, which continued intermittently until about 2,500 years ago. This activity included numerous explosive eruptions over periods of hundreds to thousands of years, which were separated by apparent dormant intervals ranging in length from a few hundred to about 15,000 years. The range of rock types erupted by...
How would an eruption of Mount Rainier compare to the 1980 eruption of Mount St. Helens?
Eruptions of Mount Rainier usually produce much less volcanic ash than do eruptions at Mount St. Helens . However, owing to the volcano's great height and widespread cover of snow and glacier ice, eruption triggered debris flows ( lahars ) at Mount Rainier are likely to be much larger--and will travel a greater distance--than those at Mount St. Helens in 1980. Furthermore, areas at risk from...
What is the origin of the name "Mount St. Helens"?
Some Native Americans of the Pacific Northwest variously called Mount St. Helens 'lawilátɬa ', or 'one from whom smoke comes'. The volcano lawilátɬa is listed (as Lawetlat’la) on the National Register of Historic Places and acknowledged as a Traditional Cultural Property of significance to the Cowlitz Indian Tribe and Confederated Tribes and Bands of the Yakama Nation. The modern name, Mount St...
How many eruptions have there been in the Cascades during the last 4,000 years?
Eruptions in the Cascades have occurred at an average rate of one to two per century during the last 4,000 years. Future eruptions are certain. Learn more: Eruptions in the Cascade Range During the Past 4,000 Years USGS Cascades Volcano Observatory
Title: The USGS Cascades Volcano Observatory - Research, monitoring, and the science of preparing society for low-probability, high-consequence events
Title: The USGS Cascades Volcano Observatory - Research, monitoring, and the science of preparing society for low-probability, high-consequence events
- Yellowstone is one of a few dozen volcanoes on earth capable of "supereruptions" that expel more than 1,000 cubic km of ash and debris.
- The plumes from such eruptions can rise 30 to 50 km into the atmosphere, three to five times as high as most jets fly.
- Yellowstone is one of a few dozen volcanoes on earth capable of "supereruptions" that expel more than 1,000 cubic km of ash and debris.
- The plumes from such eruptions can rise 30 to 50 km into the atmosphere, three to five times as high as most jets fly.
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
The United States has 169 active volcanoes. More than half of them could erupt explosively, sending ash up to 20,000 or 30,000 feet where commercial air traffic flies. USGS scientists are working to improve our understanding of volcano hazards to help protect communities and reduce the risks.
Video Sections:
USGS technologist Rick LaHusen describes how the development and deployment of instruments plays a crucial role in mitigating volcanic hazards.
USGS technologist Rick LaHusen describes how the development and deployment of instruments plays a crucial role in mitigating volcanic hazards.
Volcanic ash is geographically the most widespread of all volcanic hazards. USGS geologist Larry Mastin describes how volcanic ash can disrupt lives many thousands of miles from an erupting volcano. The development of ash cloud models and ash cloud disruption to air traffic is highlighted.
Volcanic ash is geographically the most widespread of all volcanic hazards. USGS geologist Larry Mastin describes how volcanic ash can disrupt lives many thousands of miles from an erupting volcano. The development of ash cloud models and ash cloud disruption to air traffic is highlighted.
The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.
The May 18, 1980 eruption of Mount St. Helens triggered a growth in volcano science and volcano monitoring. Five USGS volcano observatories have been established since the eruption. With new technologies and improved awareness of volcanic hazards USGS scientists are helping save lives and property across the planet.
USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.
USGS scientists recount their experiences before, during and after the May 18, 1980 eruption of Mount St. Helens. Loss of their colleague David A. Johnston and 56 others in the eruption cast a pall over one of the most dramatic geologic moments in American history.
Mount St. Helens reawakened in late September 2004. Small magnitude earthquakes beneath the 1980-1986 lava dome increased in frequency and size, and a growing welt formed on the southeast margin of the previous lava dome and nearby portions of Crater Glacier.
Mount St. Helens reawakened in late September 2004. Small magnitude earthquakes beneath the 1980-1986 lava dome increased in frequency and size, and a growing welt formed on the southeast margin of the previous lava dome and nearby portions of Crater Glacier.
Compilation video of significant events from the dome-building eruption at Mount St. Helens, from October 1, 2004 to March 15, 2005, including steam and ash eruptions, growth of lava spines, helicopter deployment of monitoring equipment, collection of lava samples, and FLIR thermal imaging of rock collapse on lava dome.
Compilation video of significant events from the dome-building eruption at Mount St. Helens, from October 1, 2004 to March 15, 2005, including steam and ash eruptions, growth of lava spines, helicopter deployment of monitoring equipment, collection of lava samples, and FLIR thermal imaging of rock collapse on lava dome.
Mount St. Helens soon after the May 18, 1980 eruption, as viewed from Johnston's Ridge.
Mount St. Helens soon after the May 18, 1980 eruption, as viewed from Johnston's Ridge.
Eruptive activity at Mount St. Helens captured the world’s attention on May 18, 1980 when the largest historical landslide on Earth and a powerful explosion reshaped the volcano. A volcanic ash cloud spread across the US in 3 days, and encircled the Earth in 15 days.
Eruptive activity at Mount St. Helens captured the world’s attention on May 18, 1980 when the largest historical landslide on Earth and a powerful explosion reshaped the volcano. A volcanic ash cloud spread across the US in 3 days, and encircled the Earth in 15 days.
Lawetlat'la—Mount St. Helens—Land in transformation
A 40-year story of river sediment at Mount St. Helens
Ten ways Mount St. Helens changed our world—The enduring legacy of the 1980 eruption
Field trip guide to Mount St. Helens, Washington—Recent and ancient volcaniclastic processes and deposits
2018 update to the U.S. Geological Survey national volcanic threat assessment
When erupting, all volcanoes pose a degree of risk to people and infrastructure, however, the risks are not equivalent from one volcano to another because of differences in eruptive style and geographic location. Assessing the relative threats posed by U.S. volcanoes identifies which volcanoes warrant the greatest risk-mitigation efforts by the U.S. Geological Survey and its partners. This update