Skip to main content
U.S. flag

An official website of the United States government

Geophysics

GGGSC geophysicists acquire and analyze airborne, ground, and laboratory geophysical and hyperspectral data to understand the distribution of surface and subsurface materials, such as minerals, water, and vegetation, for application to geologic, mineral and energy resource, wildfire, hydrologic, and environmental health studies.

Filter Total Items: 31

Large Magmatic Systems for Minerals

This project continues work on large magmatic systems in the U.S., where critical mineral commodities important to clean energy technologies can be concentrated. Modeling of large mafic intrusion extents will continue, and new geophysical methods will be applied to improve understanding of magmatic systems.
link

Large Magmatic Systems for Minerals

This project continues work on large magmatic systems in the U.S., where critical mineral commodities important to clean energy technologies can be concentrated. Modeling of large mafic intrusion extents will continue, and new geophysical methods will be applied to improve understanding of magmatic systems.
Learn More

International Integrated Minerals Interpretation

We will publish reports and interpretive papers on existing data from USGS internal mineral resource assessment collaborative work.
link

International Integrated Minerals Interpretation

We will publish reports and interpretive papers on existing data from USGS internal mineral resource assessment collaborative work.
Learn More

Spectroscopy and Hyperspectral Imaging of Critical Mineral Resources

Our project will characterize the primary critical minerals (minerals that contain critical elements in their base structure) that are not yet in the USGS Spectral Library. We propose to increase understanding of the spectral indicators of critical minerals using lab-based studies of hand specimens and drill core, hyperspectral field scanning, and hyperspectral images collected from aircraft.
link

Spectroscopy and Hyperspectral Imaging of Critical Mineral Resources

Our project will characterize the primary critical minerals (minerals that contain critical elements in their base structure) that are not yet in the USGS Spectral Library. We propose to increase understanding of the spectral indicators of critical minerals using lab-based studies of hand specimens and drill core, hyperspectral field scanning, and hyperspectral images collected from aircraft.
Learn More

Hyperspectral Imaging of Mineral Resources from New and Old Origins: Minerals for the Nation’s Economy and Utilization of Legacy Mine Lands

This project will produce maps of surface mineralogy at 15 m spatial resolution covering the largest contiguous area of hyperspectral imagery that has ever been assembled for the U.S., over 380,000 sq. km. in California and Nevada. We are developing new methods to apply these data to map critical minerals, including minerals critical for battery fabrication, and to evaluate resources available...
link

Hyperspectral Imaging of Mineral Resources from New and Old Origins: Minerals for the Nation’s Economy and Utilization of Legacy Mine Lands

This project will produce maps of surface mineralogy at 15 m spatial resolution covering the largest contiguous area of hyperspectral imagery that has ever been assembled for the U.S., over 380,000 sq. km. in California and Nevada. We are developing new methods to apply these data to map critical minerals, including minerals critical for battery fabrication, and to evaluate resources available...
Learn More

Metal Transport in Mineralized Mountain Watersheds

The central objective of this project is to develop a greater understanding of deep bedrock groundwater circulation and its contribution to surface water metal loads in mineralized mountain blocks composed of sedimentary rocks. This work is being performed in cooperation with Lawrence Berkeley National Laboratory as part of a broader research program aimed at understanding processes controlling...
link

Metal Transport in Mineralized Mountain Watersheds

The central objective of this project is to develop a greater understanding of deep bedrock groundwater circulation and its contribution to surface water metal loads in mineralized mountain blocks composed of sedimentary rocks. This work is being performed in cooperation with Lawrence Berkeley National Laboratory as part of a broader research program aimed at understanding processes controlling...
Learn More

Geophysical Studies on the Architecture of Large Igneous Systems Hosting Magmatic Ore Deposits

Platinum group elements, also known as PGEs, are a group of elements that have specific properties which make them useful for various applications in industry. One geologic setting that contains large concentrations of platinum group elements is layered mafic intrusions. This project will use new and preexisting geophysical datasets to characterize the internal structure of layered intrusions...
link

Geophysical Studies on the Architecture of Large Igneous Systems Hosting Magmatic Ore Deposits

Platinum group elements, also known as PGEs, are a group of elements that have specific properties which make them useful for various applications in industry. One geologic setting that contains large concentrations of platinum group elements is layered mafic intrusions. This project will use new and preexisting geophysical datasets to characterize the internal structure of layered intrusions...
Learn More

Geophysics of Precambrian Terranes, Upper Midwest and Rocky Mountains

The project objective is to provide follow-up geophysical ground data acquisition and interpretation for areas involving Precambrian geologic settings in the Upper Midwest and Rocky Mountains. The project is designed fill gaps and to complement the high-quality aeromagnetic acquired during the USGS Earth Mapping Resources Initiative (Earth MRI).
link

Geophysics of Precambrian Terranes, Upper Midwest and Rocky Mountains

The project objective is to provide follow-up geophysical ground data acquisition and interpretation for areas involving Precambrian geologic settings in the Upper Midwest and Rocky Mountains. The project is designed fill gaps and to complement the high-quality aeromagnetic acquired during the USGS Earth Mapping Resources Initiative (Earth MRI).
Learn More

Interdisciplinary Methods and Applications in Geophysics (IMAGe)

The project focuses on the development of novel geophysical techniques that improve our ability to understand Earth's subsurface, with broad relevance to the Mineral Resources Program and the USGS Science Strategy. Our goal is to develop and maintain state-of-the art geophysical capabilities that support the diverse science needs of USGS projects that aim to meet the challenges of the 21st century...
link

Interdisciplinary Methods and Applications in Geophysics (IMAGe)

The project focuses on the development of novel geophysical techniques that improve our ability to understand Earth's subsurface, with broad relevance to the Mineral Resources Program and the USGS Science Strategy. Our goal is to develop and maintain state-of-the art geophysical capabilities that support the diverse science needs of USGS projects that aim to meet the challenges of the 21st century...
Learn More

Geophysics of the Midcontinent Rift Region

The Midcontinent Rift system and surrounding Precambrian rocks are known to host highly significant mineral resources. Our project objectives are to increase understanding of this system through the integration of new and legacy geophysical data with geochemical and borehole data, map the lithology and structure of PreCambrian rocks, and develop an integrated 3D geologic model of the region.
link

Geophysics of the Midcontinent Rift Region

The Midcontinent Rift system and surrounding Precambrian rocks are known to host highly significant mineral resources. Our project objectives are to increase understanding of this system through the integration of new and legacy geophysical data with geochemical and borehole data, map the lithology and structure of PreCambrian rocks, and develop an integrated 3D geologic model of the region.
Learn More

Geophysical Mapping of Geologic Systems Host to Critical Mineral Deposits, Southern Midcontinent, US

The objective of this project is to use high-resolution state-of-the-art airborne and regional ground geophysical methods to map an underexplored region of the southern Midcontinent that is important to economic and critical mineral deposits.
link

Geophysical Mapping of Geologic Systems Host to Critical Mineral Deposits, Southern Midcontinent, US

The objective of this project is to use high-resolution state-of-the-art airborne and regional ground geophysical methods to map an underexplored region of the southern Midcontinent that is important to economic and critical mineral deposits.
Learn More

Geophysical Infrastructure Study: Brooklyn Mine Superfund Site

A study site of the Geophysical Infrastructure Studies: Earthen Dams and Abandoned Mine Lands project.
link

Geophysical Infrastructure Study: Brooklyn Mine Superfund Site

A study site of the Geophysical Infrastructure Studies: Earthen Dams and Abandoned Mine Lands project.
Learn More

Geophysical Research and Development

The Geophysical Research and Development Project supported the development of new and existing geophysical techniques for addressing critical geological problems. Research conducted under this project included development of needed geophysical methods and software, development of new geophysical instrumentation, and applications of geophysical techniques to frontier areas of geology.
link

Geophysical Research and Development

The Geophysical Research and Development Project supported the development of new and existing geophysical techniques for addressing critical geological problems. Research conducted under this project included development of needed geophysical methods and software, development of new geophysical instrumentation, and applications of geophysical techniques to frontier areas of geology.
Learn More
Was this page helpful?