Is groundwater the source of your drinking water? The USGS is assessing the quality of groundwater used for public supply using newly collected data along with existing water-quality data. Learn more about this invisible, vital resource so many of us depend on.
As part of the National Water Quality Program (NWQP), groundwater quality is being characterized in 20 of the Nation's 68 Principal Aquifers. These 20 aquifers supply most of the groundwater used in the United States—they account for more than three-quarters of the groundwater pumped for public supply and 85 percent of the groundwater pumped for domestic supply.
About 140 million people—almost one-half of the Nation’s population—rely on groundwater for drinking water. Regional assessments of groundwater quality are one component of the NWQP's ongoing efforts to assess, understand, and forecast the quality of the Nation’s groundwater.
Samples collected by the NWQP for the surveys of Principal Aquifers are analyzed for a large suite of regulated and unregulated constituents, including pesticides, radionuclides, metals, and pharmaceuticals. The Principal Aquifer surveys focus on characterizing the quality of groundwater prior to treatment, not the treated drinking water delivered to consumers.
Regional Assessments of Groundwater Quality
To characterize the quality of groundwater many people use for drinking, almost 1,100 deep public-supply wells have been sampled within 15 Principal Aquifers. Although samples are from source water prior to any treatment, for context the results are compared to human-health benchmarks for drinking water.
Groundwater samples were analyzed for hundreds of water-quality constituents. What have we learned?
- At least one inorganic constituent exceeded a human-health benchmark in all of the 15 Principal Aquifers surveyed to date, ranging from 3 to 50 percent of samples.
- At least one organic constituent exceeded a human-health benchmark in 2 of the 15 Principal Aquifers surveyed to date, ranging from 3 to 5 percent of samples.
- Contaminants from geologic sources—primarily trace elements such as arsenic, fluoride, and manganese—most commonly exceeded human-health benchmarks. The Floridan aquifer system was an exception, where strontium was the only trace element to exceed human-health benchmarks.
- At least one radioactive constituent exceeded a human-health benchmark in a small percentage of samples—1 to 10 percent—in most of the 15 Principal Aquifers studied. The exceptions were the Piedmont and Blue Ridge crystalline-rock aquifers and the Cambrian-Ordovician aquifer system, where exceedances were 30 and 45 percent, respectively.
- The nutrient nitrate was the only constituent from manmade sources that exceeded its human-health benchmark, typically in a low percentage of samples (1 or 2 percent). These exceedances occurred in the Floridan aquifer system, the Glacial aquifer system, the Rio Grande aquifer system, and the Valley and Ridge and Piedmont and Blue Ridge carbonate-rock aquifers.
The results are explained in easy-to-understand fact sheets, accessible below:
- The Columbia Plateau basaltic-rock aquifers (northwestern U.S.)
- The High Plains Aquifers (western U.S.)
- The Ozarks Plateaus aquifer system (central U.S.)
- The Biscayne aquifer (southeastern U.S.)
- The Basin and Range basin-fill aquifers (western U.S.)
- The Rio Grande aquifer system (southwestern U.S.)
- The Coastal Lowlands aquifer system (south central U.S.)
- The Mississippi Embayment-Texas Coastal Uplands aquifer system (south-central U.S.)
- The Floridan aquifer system (southeastern U.S.)
- The Southeastern Coastal Plain aquifer system (southeastern U.S.)
- The Northern Atlantic Coastal Plain aquifer system (east coast of U.S.)
- The Piedmont and Blue Ridge crystalline-rock aquifers (eastern U.S)
- The Valley and Ridge carbonate-rock aquifers and the Piedmont and Blue Ridge carbonate-rock aquifers (eastern U.S.)
- The Cambrian-Ordovician aquifer system (north central U.S.)
- The Glacial aquifer system (northern U.S.)
How has groundwater quality changed over the decades?
Groundwater-quality monitoring data collected many regions of the United States have been synthesized into a national assessment of groundwater-quality trends. Between 1991 and 2010, NAWQA completed assessments groundwater-quality in Principal Aquifers across much of the United States. The assessments characterized groundwater in both deep public-supply wells and shallower domestic (private) wells. Many of those wells have been resampled on a near-decadal timeframe to determine if groundwater quality has changed over time. To date 1,718 wells in 73 well networks—20-30 randomly selected wells designed to examine groundwater quality in a region— have been resampled on a near-decadal time period. The National Water Quality Program will continue to resample wells periodically to build on our understanding of long-term trends in groundwater quality.
An interactive web tool maps these decadal changes in groundwater quality. Using the web tool, users can easily visualize changes in both inorganic and organic constituent concentrations in groundwater, including chloride, nitrate, several pesticides, and some drinking-water disinfection byproducts. The website also includes a description of the methods used to evaluate changes in groundwater quality and a link to the complete set of data.
Shorter-term fluctuations in water quality
As part of the USGS National Water Quality Program, scientists are investigating why, in some areas and at some depths, groundwater quality changes at short timescales—years to months to days to hours, rather than decades. These fluctuations often are in areas where groundwater and surface water interact. This study, called the Enhanced Trends Network, is evaluating these rapid fluctuations, identifying what causes them, and determining whether the changes are just part of a seasonal trend or are part of an overall long-term trend. For those chemical constituents with human-health benchmarks (thresholds for drinking-water quality), changes in constituent concentrations are being evaluated in the context of those benchmarks—in other words, are there certain conditions under which the groundwater might require treatment before drinking?
Learn more about how the Enhanced Trends Network is providing insight on short-term fluctuations in groundwater quality.
Featured Study
Scientists home in on causes of high radium levels in key Midwestern aquifer
As part of the Principal Aquifer surveys, scientists were able to shed new light on processes that happen deep underground. These processes—which cause radium to leach from aquifer rocks into groundwater—are responsible for high concentrations of naturally occurring radium in groundwater from the Cambrian-Ordovician aquifer. This aquifer provides more than 630 million gallons of water a day for public supply to parts of Illinois, Iowa, Missouri, Michigan, Minnesota, and Wisconsin.

This USGS study helps explain how radium isotopes 224, 226, and 228 make their way into water in the Cambrian-Ordovician aquifer and where concentrations are highest. The study, part of the USGS National Water Quality Assessment Project, reports that water that was recharged into the aquifer long ago, that contains greater amounts of dissolved minerals, and that is low in dissolved oxygen is more likely to leach radium from the surrounding rock.
The groundwater tested came from public supply wells, before treatment and distribution. Radium can be removed from drinking water through treatment, thereby limiting the health risks it poses. Private wells were not tested during this study, however, more than half a million people get their drinking water from private wells that tap the Cambrian-Ordovician aquifer. These homeowners might consider having their water tested for radium.
Curious to learn more about groundwater quality near you? Learn about groundwater quality in 22 Principal Aquifers in nine regions across the United States in informative circulars filled with figures, photos, and water-quality information.
Visit the web pages below to learn more about groundwater quality across the United States and the factors that affect it.
Groundwater Quality in Principal Aquifers of the Nation, 1991–2010
Groundwater/Surface-Water Interaction
Corrosivity
Public Supply Wells
Domestic (Private) Supply Wells
Rapid Fluctuations in Groundwater Quality
Factors Affecting Vulnerability of Public-Supply Wells to Contamination
Groundwater Quality
Drinking Water Taste and Odor
Access the data releases in this topic here. Explore more data releases on groundwater quality at ScienceBase.
Datasets from Groundwater-Quality and Select Quality-Control Data from the National Water-Quality Assessment Project, January through December 2016, and Previously Unpublished Data from 2013 to 2015
Data for Fluoride Occurrence in United States Groundwater
Generalized lithology of the conterminous United States
Laboratory Quality-Control Data Associated with Groundwater Samples Collected for Hormones and Pharmaceuticals by the National Water-Quality Assessment Project in 2013-15
Third-party performance assessment data encompassing the time period of analysis of groundwater samples collected for hormones and pharmaceuticals by the National Water-Quality Assessment Project in 2013-15
Environmental and Quality-Control Data Collected by the USGS National Water-Quality Assessment Project for Hormones and Pharmaceuticals in Groundwater Used as a Source of Drinking Water Across the United States, 2013-15
Data from Decadal Change in Groundwater Quality Web Site, 1988-2014, Version 2.0
Datasets and metadata for estimates of nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology
Data from Decadal Change in Groundwater Quality Web Site, 1988-2012
Datasets from Groundwater-Quality Data from the National Water-Quality Assessment Project, January through December 2014 and Select Quality-Control Data from May 2012 through December 2014
Groundwater Quality Data from the National Water Quality Assessment Project, May 2012 through December 2013
Classification of Chloride-to-Sulfate Mass Ratio for U.S. Groundwater With Respect to the Potential to Promote Galvanic Corrosion of Lead, 1991-2015; Water Well Data and Characteristic Values for States
Below, you’ll find the latest in peer-reviewed journal articles and USGS reports on groundwater-quality in the Nation’s principal aquifers. For more publications on groundwater quality, look here or search the USGS Publications Warehouse. Look here for help using the Pubs Warehouse.
Tritium as an indicator of modern, mixed, and premodern groundwater age
Groundwater quality in the Colorado Plateaus aquifers, western United States
Groundwater quality in selected Stream Valley aquifers, western United States
Groundwater quality in the Edwards-Trinity aquifer system
Groundwater-quality and select quality-control data from the National Water-Quality Assessment Project, January 2017 through December 2019
The occurrence and distribution of strontium in U.S. groundwater
Fluoride occurrence in United States groundwater
The relation of geogenic contaminants to groundwater age, aquifer hydrologic position, water type, and redox conditions in Atlantic and Gulf Coastal Plain aquifers, eastern and south-central USA
Groundwater quality in the Ozark Plateaus aquifer system, central United States
Groundwater quality in the Columbia Plateau basaltic-rock aquifers, northwestern United States
Groundwater quality in the High Plains aquifer
Causal factors for pesticide trends in streams of the United States: Atrazine and deethylatrazine
Using age tracers and decadal sampling to discern trends in nitrate, arsenic and uranium in groundwater beneath irrigated cropland
Below are news stories associated with this project.
Contaminants present in many parts of the Glacial aquifer system
Are you one of 30 million Americans whose drinking-water supply relies on groundwater from the glacial aquifer system? A new USGS study assesses the quality of untreated groundwater from this critical water resource, which underlies parts of 25 northern U.S. states.
- Overview
Is groundwater the source of your drinking water? The USGS is assessing the quality of groundwater used for public supply using newly collected data along with existing water-quality data. Learn more about this invisible, vital resource so many of us depend on.
As part of the National Water Quality Program (NWQP), groundwater quality is being characterized in 20 of the Nation's 68 Principal Aquifers. These 20 aquifers supply most of the groundwater used in the United States—they account for more than three-quarters of the groundwater pumped for public supply and 85 percent of the groundwater pumped for domestic supply.
About 140 million people—almost one-half of the Nation’s population—rely on groundwater for drinking water. Regional assessments of groundwater quality are one component of the NWQP's ongoing efforts to assess, understand, and forecast the quality of the Nation’s groundwater.
Samples collected by the NWQP for the surveys of Principal Aquifers are analyzed for a large suite of regulated and unregulated constituents, including pesticides, radionuclides, metals, and pharmaceuticals. The Principal Aquifer surveys focus on characterizing the quality of groundwater prior to treatment, not the treated drinking water delivered to consumers.
Regional Assessments of Groundwater Quality
To characterize the quality of groundwater many people use for drinking, almost 1,100 deep public-supply wells have been sampled within 15 Principal Aquifers. Although samples are from source water prior to any treatment, for context the results are compared to human-health benchmarks for drinking water.
Groundwater samples were analyzed for hundreds of water-quality constituents. What have we learned?
- At least one inorganic constituent exceeded a human-health benchmark in all of the 15 Principal Aquifers surveyed to date, ranging from 3 to 50 percent of samples.
- At least one organic constituent exceeded a human-health benchmark in 2 of the 15 Principal Aquifers surveyed to date, ranging from 3 to 5 percent of samples.
- Contaminants from geologic sources—primarily trace elements such as arsenic, fluoride, and manganese—most commonly exceeded human-health benchmarks. The Floridan aquifer system was an exception, where strontium was the only trace element to exceed human-health benchmarks.
- At least one radioactive constituent exceeded a human-health benchmark in a small percentage of samples—1 to 10 percent—in most of the 15 Principal Aquifers studied. The exceptions were the Piedmont and Blue Ridge crystalline-rock aquifers and the Cambrian-Ordovician aquifer system, where exceedances were 30 and 45 percent, respectively.
- The nutrient nitrate was the only constituent from manmade sources that exceeded its human-health benchmark, typically in a low percentage of samples (1 or 2 percent). These exceedances occurred in the Floridan aquifer system, the Glacial aquifer system, the Rio Grande aquifer system, and the Valley and Ridge and Piedmont and Blue Ridge carbonate-rock aquifers.
Overview of water quality in Principal Aquifers, 2013-2021. The colored pie charts indicate the proportion of the area studied that contained a constituent in untreated groundwater at a concentration that exceeds a human-health benchmark for drinking water. The results are explained in easy-to-understand fact sheets, accessible below:
- The Columbia Plateau basaltic-rock aquifers (northwestern U.S.)
- The High Plains Aquifers (western U.S.)
- The Ozarks Plateaus aquifer system (central U.S.)
- The Biscayne aquifer (southeastern U.S.)
- The Basin and Range basin-fill aquifers (western U.S.)
- The Rio Grande aquifer system (southwestern U.S.)
- The Coastal Lowlands aquifer system (south central U.S.)
- The Mississippi Embayment-Texas Coastal Uplands aquifer system (south-central U.S.)
- The Floridan aquifer system (southeastern U.S.)
- The Southeastern Coastal Plain aquifer system (southeastern U.S.)
- The Northern Atlantic Coastal Plain aquifer system (east coast of U.S.)
- The Piedmont and Blue Ridge crystalline-rock aquifers (eastern U.S)
- The Valley and Ridge carbonate-rock aquifers and the Piedmont and Blue Ridge carbonate-rock aquifers (eastern U.S.)
- The Cambrian-Ordovician aquifer system (north central U.S.)
- The Glacial aquifer system (northern U.S.)
How has groundwater quality changed over the decades?
Groundwater-quality monitoring data collected many regions of the United States have been synthesized into a national assessment of groundwater-quality trends. Between 1991 and 2010, NAWQA completed assessments groundwater-quality in Principal Aquifers across much of the United States. The assessments characterized groundwater in both deep public-supply wells and shallower domestic (private) wells. Many of those wells have been resampled on a near-decadal timeframe to determine if groundwater quality has changed over time. To date 1,718 wells in 73 well networks—20-30 randomly selected wells designed to examine groundwater quality in a region— have been resampled on a near-decadal time period. The National Water Quality Program will continue to resample wells periodically to build on our understanding of long-term trends in groundwater quality.
An interactive web tool maps these decadal changes in groundwater quality. Using the web tool, users can easily visualize changes in both inorganic and organic constituent concentrations in groundwater, including chloride, nitrate, several pesticides, and some drinking-water disinfection byproducts. The website also includes a description of the methods used to evaluate changes in groundwater quality and a link to the complete set of data.
Shorter-term fluctuations in water quality
As part of the USGS National Water Quality Program, scientists are investigating why, in some areas and at some depths, groundwater quality changes at short timescales—years to months to days to hours, rather than decades. These fluctuations often are in areas where groundwater and surface water interact. This study, called the Enhanced Trends Network, is evaluating these rapid fluctuations, identifying what causes them, and determining whether the changes are just part of a seasonal trend or are part of an overall long-term trend. For those chemical constituents with human-health benchmarks (thresholds for drinking-water quality), changes in constituent concentrations are being evaluated in the context of those benchmarks—in other words, are there certain conditions under which the groundwater might require treatment before drinking?
Learn more about how the Enhanced Trends Network is providing insight on short-term fluctuations in groundwater quality.
Featured Study
Scientists home in on causes of high radium levels in key Midwestern aquifer
As part of the Principal Aquifer surveys, scientists were able to shed new light on processes that happen deep underground. These processes—which cause radium to leach from aquifer rocks into groundwater—are responsible for high concentrations of naturally occurring radium in groundwater from the Cambrian-Ordovician aquifer. This aquifer provides more than 630 million gallons of water a day for public supply to parts of Illinois, Iowa, Missouri, Michigan, Minnesota, and Wisconsin.
Sources/Usage: Public Domain. Visit Media to see details.Concentrations of radium in samples of untreated groundwater from the Cambrian-Ordovician groundwater system frequently exceeded the USEPA Maximum Contaminant Level (MCL) of 5 picocuries per liter in Illinois, Iowa, and eastern Wisconsin, where wells tap deeper, older groundwater. From Stackelberg and others, 2018, "Radium mobility and the age of groundwater in public-drinking-water supplies from the Cambrian-Ordovician aquifer system, north-central USA." This USGS study helps explain how radium isotopes 224, 226, and 228 make their way into water in the Cambrian-Ordovician aquifer and where concentrations are highest. The study, part of the USGS National Water Quality Assessment Project, reports that water that was recharged into the aquifer long ago, that contains greater amounts of dissolved minerals, and that is low in dissolved oxygen is more likely to leach radium from the surrounding rock.
The groundwater tested came from public supply wells, before treatment and distribution. Radium can be removed from drinking water through treatment, thereby limiting the health risks it poses. Private wells were not tested during this study, however, more than half a million people get their drinking water from private wells that tap the Cambrian-Ordovician aquifer. These homeowners might consider having their water tested for radium.
A USGS employee samples recharged groundwater beneath an agricultural field. Photo from USGS circular 1352 "Water quality in the Glacial Aquifer System, Northern United States, 1993-2009. Curious to learn more about groundwater quality near you? Learn about groundwater quality in 22 Principal Aquifers in nine regions across the United States in informative circulars filled with figures, photos, and water-quality information.
- Science
Visit the web pages below to learn more about groundwater quality across the United States and the factors that affect it.
Groundwater Quality in Principal Aquifers of the Nation, 1991–2010
What’s in your groundwater? Learn about groundwater quality in the Principal Aquifers of nine regions across the United States in informative circulars filled with figures, photos, and water-quality information.Groundwater/Surface-Water Interaction
Water and the chemicals it contains are constantly being exchanged between the land surface and the subsurface. Surface water seeps into the ground and recharges the underlying aquifer—groundwater discharges to the surface and supplies the stream with baseflow. USGS Integrated Watershed Studies assess these exchanges and their effect on surface-water and groundwater quality and quantity.Corrosivity
Corrosivity describes how aggressive water is at corroding pipes and fixtures. Corrosive water can cause lead and copper in pipes to leach into drinking water and can eventually cause leaks in plumbing. Surface water and groundwater, both sources of drinking water, can potentially be corrosive.Public Supply Wells
Are you among the more than 100 million people in the U.S. who relies on a public-supply well for your drinking water? Although the quality of finished drinking water from public water systems is regulated by the EPA, long-term protection and management of the raw groundwater tapped by public-supply wells requires an understanding of the occurrence of contaminants in this invisible, vital resource...Domestic (Private) Supply Wells
More than 43 million people—about 15 percent of the U.S. population—rely on domestic (private) wells as their source of drinking water. The quality and safety of water from domestic wells are not regulated by the Federal Safe Drinking Water Act or, in most cases, by state laws. Instead, individual homeowners are responsible for maintaining their domestic well systems and for monitoring water...Rapid Fluctuations in Groundwater Quality
We think of groundwater as moving slowly, and groundwater quality as changing slowly—over decades or even centuries. But in some parts of some aquifers, groundwater quality can fluctuate rapidly, sometimes over just a few hours. Are such changes part of a long-term trend, or just part of a short-term cycle? And what does that mean for suitability for drinking?Factors Affecting Vulnerability of Public-Supply Wells to Contamination
More than 100 million people in the United States—about 35 percent of the population—receive their drinking water from public-supply wells. These systems can be vulnerable to contamination from naturally occurring constituents, such as radon, uranium and arsenic, and from commonly used manmade chemicals, such as fertilizers, pesticides, solvents, and gasoline hydrocarbons. Learn about the...Groundwater Quality
Even though the ground is an excellent mechanism for filtering out particulate matter, such as leaves, soil, and bugs, dissolved chemicals and gases can still occur in large enough concentrations in groundwater to cause problems.Drinking Water Taste and Odor
Some water is just unpleasant to drink—it’s cloudy, or it smells or tastes bad. Some drinking water discolors teeth or skin, stains laundry or plumbing fixtures, or corrodes or clogs pipes. These effects are caused when some naturally occurring constituents occur at concentrations high enough to be a nuisance, and are particularly common where groundwater is used as a drinking water supply. - Data
Access the data releases in this topic here. Explore more data releases on groundwater quality at ScienceBase.
Filter Total Items: 13Datasets from Groundwater-Quality and Select Quality-Control Data from the National Water-Quality Assessment Project, January through December 2016, and Previously Unpublished Data from 2013 to 2015
Groundwater-quality data were collected from 648 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program and are included in this report. Most of the wells (514) were sampled from January through December 2016 and 60 of them were sampled in 2013 and 74 in 2014. The data were collected from seven types of well networks: principal aData for Fluoride Occurrence in United States Groundwater
Data from 38,105 wells were used to characterize fluoride occurrence in untreated United States groundwater. The data were retrieved from the U.S. Geological Survey (USGS) National Water Information System (NWIS). Groundwater samples were collected from 1988 to 2017 in the conterminous United States. Data for groundwater included in this dataset are pH, water temperature, and concentrations of disGeneralized lithology of the conterminous United States
This dataset contains generalized lithologic classes (rocktypes) as reassigned from the USGS state geologic map compilation for the conterminous United States (Schweitzer, 2011). Lithology was classified into 12 generalized categories using the fields LITH62 and LITH62MINO available in Schweitzer (2011). Geospatial and tabular data associated with the generalized lithologic classes (rocktypes) areLaboratory Quality-Control Data Associated with Groundwater Samples Collected for Hormones and Pharmaceuticals by the National Water-Quality Assessment Project in 2013-15
This data set includes results for hormone and pharmaceutical compounds analyzed in laboratory quality-control samples associated with environmental samples collected by the National Water-Quality Assessment (NAWQA) Project during 2013 through 2015 for a study of groundwater resources used for drinking-water supply across the United States. Hormone and pharmaceutical results are provided for laborThird-party performance assessment data encompassing the time period of analysis of groundwater samples collected for hormones and pharmaceuticals by the National Water-Quality Assessment Project in 2013-15
This data set includes sample information and results for third-party performance assessment samples analyzed for hormones and pharmaceuticals during the same general time period as environmental samples collected by the National Water-Quality Assessment (NAWQA) Project for a study of groundwater resources used for drinking-water supply across the United States, 2013 through 2015. Hormone and pharEnvironmental and Quality-Control Data Collected by the USGS National Water-Quality Assessment Project for Hormones and Pharmaceuticals in Groundwater Used as a Source of Drinking Water Across the United States, 2013-15
This data set includes results for hormone and pharmaceutical compounds analyzed in environmental and quality-control samples collected by the USGS National Water-Quality Assessment Project during 2013 through 2015 for a study of groundwater resources used for drinking-water supply across the United States. Hormone and pharmaceutical results are provided for environmental samples collected at 1,12Data from Decadal Change in Groundwater Quality Web Site, 1988-2014, Version 2.0
Evaluating Decadal Changes in Groundwater Quality: Groundwater quality data were collected from 5,000 wells between 1988-2001 (first sampling event) by the U.S. Geological Survey's National Water-Quality Assessment Project. Samples are collected in groups of 20-30 wells with similar characteristics called networks. About 1,500 of these wells in 67 networks were sampled about 10 years later betweeDatasets and metadata for estimates of nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology
This USGS data release contains datasets, metadata, and figures associated with estimating nitrate loads and yields from groundwater to streams in the Chesapeake Bay watershed based on land use and geology. There are three shapefiles with associated metadata and figures representing the shapefiles: Catchments_GWcontribN.shp: NHDPlus catchment estimates of groundwater contribution of nitraData from Decadal Change in Groundwater Quality Web Site, 1988-2012
Groundwater quality data were collected in 5,000 wells between 1988-2001 by the National Water-Quality Assessment Project. About 1,500 of these wells were sampled again between 2002-2012 to evaluate decadal changes in groundwater quality. Monitoring wells, domestic supply wells, and some public supply wells were included in this study. All water was collected prior to treatment. Groundwater sampleDatasets from Groundwater-Quality Data from the National Water-Quality Assessment Project, January through December 2014 and Select Quality-Control Data from May 2012 through December 2014
Groundwater-quality data were collected from 559 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from January through December 2014. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, whicGroundwater Quality Data from the National Water Quality Assessment Project, May 2012 through December 2013
Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, whiClassification of Chloride-to-Sulfate Mass Ratio for U.S. Groundwater With Respect to the Potential to Promote Galvanic Corrosion of Lead, 1991-2015; Water Well Data and Characteristic Values for States
Galvanic corrosion of lead in water distribution systems can occur when lead pipe or lead solder is in contact with a dissimilar metal such as copper. If the source water entering those systems has a relatively elevated chloride-to-sulfate mass ratio (CSMR), the potential for galvanic corrosion to occur is elevated (Gregory 1985; Edwards and Triantafyllidou, 2007), especially in water with low val - Publications
Below, you’ll find the latest in peer-reviewed journal articles and USGS reports on groundwater-quality in the Nation’s principal aquifers. For more publications on groundwater quality, look here or search the USGS Publications Warehouse. Look here for help using the Pubs Warehouse.
Tritium as an indicator of modern, mixed, and premodern groundwater age
Categorical classification of groundwater age is often used for the assessment and understanding of groundwater resources. This report presents a tritium-based age classification system for the conterminous United States based on tritium (3H) thresholds that vary in space and time: modern (recharged in 1953 or later), if the measured value is larger than an upper threshold; premodern (recharged prAuthorsBruce D. Lindsey, Bryant C. Jurgens, Kenneth BelitzFilter Total Items: 60Groundwater quality in the Colorado Plateaus aquifers, western United States
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Colorado Plateaus aquifers constitute one of the important areas being evaluated.AuthorsJames R. Degnan, MaryLynn MusgroveGroundwater quality in selected Stream Valley aquifers, western United States
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Stream Valley aquifers constitute one of the important aquifer systems being evaluated.AuthorsJames A. KingsburyGroundwater quality in the Edwards-Trinity aquifer system
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Edwards-Trinity aquifer system constitutes one of the important aquifers being evaluated.AuthorsMaryLynn MusgroveGroundwater-quality and select quality-control data from the National Water-Quality Assessment Project, January 2017 through December 2019
Groundwater-quality environmental data were collected from 983 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water Quality Program and are included in this report. The data were collected from six types of well networks: principal aquifer study networks, which are used to assess the quality of groundwater used for public water supply; land-usAuthorsJames A. Kingsbury, Laura M. Bexfield, Terri Arnold, MaryLynn Musgrove, Melinda L. Erickson, James R. Degnan, Anthony J. Tesoriero, Bruce D. Lindsey, Kenneth BelitzThe occurrence and distribution of strontium in U.S. groundwater
Groundwater samples from 32 principal aquifers across the United States (U.S.) provide a broad spatial scope of the occurrence and distribution of strontium (Sr) and are used to assess environments and factors that influence Sr concentration. Strontium is a common trace element in soils, rocks, and water and is ubiquitous in groundwater with detectable concentrations in 99.8% of samples (n=4,824;AuthorsMaryLynn MusgroveFluoride occurrence in United States groundwater
Data from 38,105 wells were used to characterize fluoride (F) occurrence in untreated United States (U.S.) groundwater. For domestic wells (n = 11,032), water from which is generally not purposely fluoridated or monitored for quality, 10.9% of the samples have F concentrations >0.7 mg/L (U.S. Public Health Service recommended optimal F concentration in drinking water for preventing tooth decay) (8AuthorsPeter B. McMahon, Craig J. Brown, Tyler D. Johnson, Kenneth Belitz, Bruce D. LindseyThe relation of geogenic contaminants to groundwater age, aquifer hydrologic position, water type, and redox conditions in Atlantic and Gulf Coastal Plain aquifers, eastern and south-central USA
Groundwater age distributions developed from carbon-14 (14C), tritium (3H), and helium-4 (4He) concentrations, along with aquifer hydrologic position, water type, and redox conditions, were compared to geogenic contaminants of concern (GCOC) from 252 public-supply wells in six Atlantic and Gulf Coastal Plain unconsolidated-sediment aquifers. Concentrations of one or more GCOCs in 168 (67%) wellsAuthorsJames R. Degnan, Bruce D. Lindsey, Joseph Patrick Levitt, Zoltan SzaboGroundwater quality in the Ozark Plateaus aquifer system, central United States
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water (Burow and Belitz, 2014). The Ozark Plateaus aquifer system constitutes one of the important aquifer systems being evaluatAuthorsJames A. KingsburyGroundwater quality in the Columbia Plateau basaltic-rock aquifers, northwestern United States
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The Columbia Plateau basaltic-rock aquifers constitute one of the important resources being evaluated.AuthorsMaryLynn MusgroveGroundwater quality in the High Plains aquifer
Groundwater provides nearly 50 percent of the Nation’s drinking water. To help protect this vital resource, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Project assesses groundwater quality in aquifers that are important sources of drinking water. The High Plains aquifer constitutes one of the important aquifers being evaluated.AuthorsMaryLynn MusgroveCausal factors for pesticide trends in streams of the United States: Atrazine and deethylatrazine
Pesticides are important for agriculture in the United States, and atrazine is one of the most widely used and widely detected pesticides in surface water. A better understanding of the mechanisms by which atrazine and its degradation product, deethylatrazine, increase and decrease in surface waters can help inform future decisions for water-quality improvement. This study considers causal factorsAuthorsKaren R. Ryberg, Wesley W. Stone, Nancy T. BakerUsing age tracers and decadal sampling to discern trends in nitrate, arsenic and uranium in groundwater beneath irrigated cropland
Repeat sampling and age tracers were used to examine trends in nitrate, arsenic and uranium concentrations in groundwater beneath irrigated cropland. Much higher nitrate concentrations in shallow modern groundwater were observed at both the Columbia Plateau and High Plains sites (median values of 10.2 and 15.4 mg/L as N, respectively) than in groundwater that recharged prior to the onset of intensAuthorsAnthony J. Tesoriero, Karen R. Burow, Lonna Frans, Jonathan V. Haynes, Christopher M. Hobza, Bruce D. Lindsey, John E. Solder - News
Below are news stories associated with this project.
Contaminants present in many parts of the Glacial aquifer system
Are you one of 30 million Americans whose drinking-water supply relies on groundwater from the glacial aquifer system? A new USGS study assesses the quality of untreated groundwater from this critical water resource, which underlies parts of 25 northern U.S. states.
Filter Total Items: 16