Skip to main content
U.S. flag

An official website of the United States government

Oceans, Estuaries, Deltas, and Coasts

Filter Total Items: 46

Water Quality After Wildfire

Wildfires pose a substantial risk to water supplies because they can lead to severe flooding, erosion, and delivery of sediment, nutrients, and metals to rivers, lakes, and reservoirs. The USGS works with federal and state land managers and local water providers to monitor and assess water quality after wildfires in order to help protect our Nation’s water resources.
link

Water Quality After Wildfire

Wildfires pose a substantial risk to water supplies because they can lead to severe flooding, erosion, and delivery of sediment, nutrients, and metals to rivers, lakes, and reservoirs. The USGS works with federal and state land managers and local water providers to monitor and assess water quality after wildfires in order to help protect our Nation’s water resources.
Learn More

CASCaDE: Computational Assessments of Scenarios of Change for the Delta Ecosystem

The Delta of the Sacramento and San Joaquin rivers provides drinking water supplies to two-thirds of Californians, and is a fragile ecosystem home to threatened and endangered species. The CASCaDE project builds on several decades of USGS science to address the goals of achieving water supply reliability and restoring the ecosystems in the Bay-Delta system.
link

CASCaDE: Computational Assessments of Scenarios of Change for the Delta Ecosystem

The Delta of the Sacramento and San Joaquin rivers provides drinking water supplies to two-thirds of Californians, and is a fragile ecosystem home to threatened and endangered species. The CASCaDE project builds on several decades of USGS science to address the goals of achieving water supply reliability and restoring the ecosystems in the Bay-Delta system.
Learn More

Integrated Water Science (IWS) Basins

The U.S. Geological Survey is integrating its water science programs to better address the Nation’s greatest water resource challenges. At the heart of this effort are plans to intensively study at least 10 Integrated Water Science (IWS) basins — medium-sized watersheds (10,000-20,000 square miles) and underlying aquifers — over the next decade. The IWS basins will represent a wide range of...
link

Integrated Water Science (IWS) Basins

The U.S. Geological Survey is integrating its water science programs to better address the Nation’s greatest water resource challenges. At the heart of this effort are plans to intensively study at least 10 Integrated Water Science (IWS) basins — medium-sized watersheds (10,000-20,000 square miles) and underlying aquifers — over the next decade. The IWS basins will represent a wide range of...
Learn More

Integrated Water Availability Assessments: Delaware River Basin

Integrated Water Availability Assessments examine water supply, use, and availability. In the Delaware River Basin, which serves over 13 million people, water availability can be affected by drought, river temperature, salinity, and more. The Delaware River Basin IWAAs will investigate these and other water quantity, quality, and use issues to assess available water and how it changes over time.
link

Integrated Water Availability Assessments: Delaware River Basin

Integrated Water Availability Assessments examine water supply, use, and availability. In the Delaware River Basin, which serves over 13 million people, water availability can be affected by drought, river temperature, salinity, and more. The Delaware River Basin IWAAs will investigate these and other water quantity, quality, and use issues to assess available water and how it changes over time.
Learn More

Sampling Methods for the Water Quality of San Francisco Bay Project

The Water Quality of San Francisco Bay Research and Monitoring Project measures changes in water quality along the deep channel of the San Francisco Bay-Delta system using submersible sensors and discrete water samples. Learn more about how we collect and measure water-quality data.
link

Sampling Methods for the Water Quality of San Francisco Bay Project

The Water Quality of San Francisco Bay Research and Monitoring Project measures changes in water quality along the deep channel of the San Francisco Bay-Delta system using submersible sensors and discrete water samples. Learn more about how we collect and measure water-quality data.
Learn More

Research Vessel David H. Peterson

The Research Vessel David H. Peterson begain service with the U.S. Geological Survey in 2015. Named after a founder of the Water Quality of San Francisco Bay Research and Monitoring Project, this vessel is a high-tech scientific platform for estuarine research. Learn more about how the R/V David H. Peterson makes our research possible.
link

Research Vessel David H. Peterson

The Research Vessel David H. Peterson begain service with the U.S. Geological Survey in 2015. Named after a founder of the Water Quality of San Francisco Bay Research and Monitoring Project, this vessel is a high-tech scientific platform for estuarine research. Learn more about how the R/V David H. Peterson makes our research possible.
Learn More

USGS Blue Carbon Projects

Together with partner organizations, the USGS is involved in data collection, analysis, and synthesis to improve estimates of coastal wetland carbon fluxes. This research will help improve science and data availability across a wide range of topics.
link

USGS Blue Carbon Projects

Together with partner organizations, the USGS is involved in data collection, analysis, and synthesis to improve estimates of coastal wetland carbon fluxes. This research will help improve science and data availability across a wide range of topics.
Learn More

Water Quality of San Francisco Bay Research and Monitoring Project

Since 1969, the U.S. Geological Survey has maintained a research project in the San Francisco Bay-Delta system to measure and understand how estuarine systems and tidal river deltas function and change in response to hydro-climatic variability and human activities.
link

Water Quality of San Francisco Bay Research and Monitoring Project

Since 1969, the U.S. Geological Survey has maintained a research project in the San Francisco Bay-Delta system to measure and understand how estuarine systems and tidal river deltas function and change in response to hydro-climatic variability and human activities.
Learn More

Harmful Algal Bloom (HAB) Cooperative Matching Funds Projects

New projects from coast to coast will advance the research on harmful algal blooms (HABs) in lakes, reservoirs and rivers. The vivid emerald-colored algal blooms are caused by cyanobacteria, which can produce cyanotoxins that threaten human health and aquatic ecosystems and can cause major economic damage.
link

Harmful Algal Bloom (HAB) Cooperative Matching Funds Projects

New projects from coast to coast will advance the research on harmful algal blooms (HABs) in lakes, reservoirs and rivers. The vivid emerald-colored algal blooms are caused by cyanobacteria, which can produce cyanotoxins that threaten human health and aquatic ecosystems and can cause major economic damage.
Learn More

Urban Waters Federal Partnership Cooperative Matching Funds Projects

The Urban Waters Federal Partnership reconnects urban communities with their waterways by improving coordination among federal agencies, particularly those communities that have been disproportionately impacted by pollution or economic distress. The UWFP draws upon Environmental Justice principles—the idea that all people, regardless of race, religion, national origin, or economic station, deserve...
link

Urban Waters Federal Partnership Cooperative Matching Funds Projects

The Urban Waters Federal Partnership reconnects urban communities with their waterways by improving coordination among federal agencies, particularly those communities that have been disproportionately impacted by pollution or economic distress. The UWFP draws upon Environmental Justice principles—the idea that all people, regardless of race, religion, national origin, or economic station, deserve...
Learn More

Rapid Deployment Gages (RDGs)

Rapid Deployment Gages (RDGs) are fully-functional streamgages designed to be deployed quickly and temporarily to measure and transmit stream stage data in emergency situations.
link

Rapid Deployment Gages (RDGs)

Rapid Deployment Gages (RDGs) are fully-functional streamgages designed to be deployed quickly and temporarily to measure and transmit stream stage data in emergency situations.
Learn More

Water Use in the United States

The USGS produces national estimates of water withdrawal and consumptive water use. Withdrawal estimates are currently being finalized for a 20-year period from 2000 to 2020 for the three largest water use categories nationally (public supply, self-supplied thermoelectric power, and self-supplied crop irrigation). Six additional categories of use (self-supplied industrial, domestic, mining...
link

Water Use in the United States

The USGS produces national estimates of water withdrawal and consumptive water use. Withdrawal estimates are currently being finalized for a 20-year period from 2000 to 2020 for the three largest water use categories nationally (public supply, self-supplied thermoelectric power, and self-supplied crop irrigation). Six additional categories of use (self-supplied industrial, domestic, mining...
Learn More