Skip to main content
U.S. flag

An official website of the United States government

Images

Images related to Yellowstone Volcano Observatory.

Filter Total Items: 552
A man in a green shirt is building a gauge for rapid deployment. The gauge is a large black box, sitting on a workbench.
USGS response to Tropical Storm Debby in Georgia
USGS response to Tropical Storm Debby in Georgia
USGS response to Tropical Storm Debby in Georgia

Drew Robinson, a USGS hydrological technician, is putting a Rapid Deployment Gauge together for the Georgia Department of Transportation on Wednesday, August 7. He built the RDG and deployed it in Statesboro in the early evening. That RDG was used to help the local community experiencing bad floods on Lotts Creek.

Drew Robinson, a USGS hydrological technician, is putting a Rapid Deployment Gauge together for the Georgia Department of Transportation on Wednesday, August 7. He built the RDG and deployed it in Statesboro in the early evening. That RDG was used to help the local community experiencing bad floods on Lotts Creek.

Plot of size versus annual probability for hydrothermal explosion craters in Yellowstone National Park
Plot of size versus annual probability for hydrothermal explosion craters in Yellowstone National Park
Plot of size versus annual probability for hydrothermal explosion craters in Yellowstone National Park
Plot of size versus annual probability for hydrothermal explosion craters in Yellowstone National Park

Plot of size versus annual probability for hydrothermal explosion craters in Yellowstone National Park. The line is a model based on the energy required to form a crater of a specific size, and it is fit to known hydrothermal explosion craters in Yellowstone National Park.

Plot of size versus annual probability for hydrothermal explosion craters in Yellowstone National Park. The line is a model based on the energy required to form a crater of a specific size, and it is fit to known hydrothermal explosion craters in Yellowstone National Park.

Graph showing explosions recorded at Black Diamond Pool in Biscuit Basin, Yellowstone National Park, during 2006 through 2016
Graph showing explosions recorded at Black Diamond Pool in Biscuit Basin, Yellowstone National Park, during 2006 through 2016
Graph showing explosions recorded at Black Diamond Pool in Biscuit Basin, Yellowstone National Park, during 2006 through 2016
Graph showing explosions recorded at Black Diamond Pool in Biscuit Basin, Yellowstone National Park, during 2006 through 2016

Graph showing explosions recorded at Black Diamond Pool in Biscuit Basin, Yellowstone National Park, during 2006 through 2016. Confirmed events refer to eruptions that were witnessed, recorded by temperature loggers, or inferred from their aftermath. Unconfirmed events refer to eruptions that were questionable or might have been misattributed to Black Diamond.

Graph showing explosions recorded at Black Diamond Pool in Biscuit Basin, Yellowstone National Park, during 2006 through 2016. Confirmed events refer to eruptions that were witnessed, recorded by temperature loggers, or inferred from their aftermath. Unconfirmed events refer to eruptions that were questionable or might have been misattributed to Black Diamond.

Photomicrograph showing a quartz-hosted embayment from the Mesa Falls Tuff, accompanied by a map showing the location of the tuff in eastern Idaho.
Quartz-hosted embayment from the Mesa Falls Tuff
Quartz-hosted embayment from the Mesa Falls Tuff
Quartz-hosted embayment from the Mesa Falls Tuff

(A) Photomicrograph of a quartz-hosted embayment from the Mesa Falls Tuff. “MI” indicates a glassy inclusion of melt within the crystal. (B) Thickness (in centimeters) and extent of the Mesa Falls ash flow deposit (pink areas) and its source, Henrys Fork Caldera (dashed line).  Figure by Kenneth Befus, University of Texas at Austin.

(A) Photomicrograph of a quartz-hosted embayment from the Mesa Falls Tuff. “MI” indicates a glassy inclusion of melt within the crystal. (B) Thickness (in centimeters) and extent of the Mesa Falls ash flow deposit (pink areas) and its source, Henrys Fork Caldera (dashed line).  Figure by Kenneth Befus, University of Texas at Austin.

Photomicrograph showing water distribution in a quartz-hosted embayment, with greater concentrations at the embayment mouth. Includes a plot showing that the temperature in which the water circulated must have been about 500 degrees Celsius.
Water distribution in a quartz-hosted embayment from the Mesa Falls Tuff
Water distribution in a quartz-hosted embayment from the Mesa Falls Tuff
Water distribution in a quartz-hosted embayment from the Mesa Falls Tuff

(A) Water distribution in a quartz-hosted embayment measured with synchrotron Fourier Transform Infrared spectroscopy. Warmer colors indicate higher concentrations of water.  Dashed line shows a transect of water content that is modeled in panel (B) to indicate that the emplacement temperature of the ash flow deposit must have been about 500 °C (930 °F).

(A) Water distribution in a quartz-hosted embayment measured with synchrotron Fourier Transform Infrared spectroscopy. Warmer colors indicate higher concentrations of water.  Dashed line shows a transect of water content that is modeled in panel (B) to indicate that the emplacement temperature of the ash flow deposit must have been about 500 °C (930 °F).

Shaded relief location map for the East Gallatin-Reese Creek fault system in northwest Yellowstone National Park
Shaded relief location map for the East Gallatin-Reese Creek fault system in northwest Yellowstone National Park
Shaded relief location map for the East Gallatin-Reese Creek fault system in northwest Yellowstone National Park
Shaded relief location map for the East Gallatin-Reese Creek fault system in northwest Yellowstone National Park

Shaded relief location map for the East Gallatin-Reese Creek fault system (EGRCFS) in northwest Yellowstone National Park (YNP). The location of the EGRCFS is shown as mapped in the U.S.

Shaded relief location map for the East Gallatin-Reese Creek fault system (EGRCFS) in northwest Yellowstone National Park (YNP). The location of the EGRCFS is shown as mapped in the U.S.

Lidar hillshade maps of fault scarps that offset Pinedale glacial till along the East Gallatin-Reese Creek fault system, Yellowstone National Park
Lidar hillshade maps of fault scarps that offset Pinedale glacial till along the East Gallatin-Reese Creek fault system, Yellowstone National Park
Lidar hillshade maps of fault scarps that offset Pinedale glacial till along the East Gallatin-Reese Creek fault system, Yellowstone National Park
Lidar hillshade maps of fault scarps that offset Pinedale glacial till along the East Gallatin-Reese Creek fault system, Yellowstone National Park

Lidar hillshade maps of fault scarps that offset Pinedale glacial till along the East Gallatin-Reese Creek fault system (EGRCFS) near Fawn Creek (A) and Panther Creek (B). Fault scarps are visible as darker lineaments in the hillshade and are marked by the black arrows. Red rectangles on inset maps show location along the EGRCFS.

Lidar hillshade maps of fault scarps that offset Pinedale glacial till along the East Gallatin-Reese Creek fault system (EGRCFS) near Fawn Creek (A) and Panther Creek (B). Fault scarps are visible as darker lineaments in the hillshade and are marked by the black arrows. Red rectangles on inset maps show location along the EGRCFS.

Large block of debris in front of a steaming pool.  The block was transported by the July 23, 2024, hydrothermal explosion at Biscuit Basin, Yellowstone National Park
Largest identified boulder displaced by the July 23, 2024, explosion from Black Diamond Pool, Yellowstone National Park
Largest identified boulder displaced by the July 23, 2024, explosion from Black Diamond Pool, Yellowstone National Park
Largest identified boulder displaced by the July 23, 2024, explosion from Black Diamond Pool, Yellowstone National Park

This boulder is the largest that is confirmed to have been part of the July 23, 2024, hydrothermal explosion from Black Diamond Pool, Biscuit Basin, Yellowstone National Park.  The tape measure is 50 centimeters (20 inches) long.  Black Diamond Pool and a boardwalk are in the background.

This boulder is the largest that is confirmed to have been part of the July 23, 2024, hydrothermal explosion from Black Diamond Pool, Biscuit Basin, Yellowstone National Park.  The tape measure is 50 centimeters (20 inches) long.  Black Diamond Pool and a boardwalk are in the background.

High-resolution Planet satellite image of Biscuit Basin, Yellowstone National Park, from July 24, 2024
High-resolution Planet satellite image of Biscuit Basin, Yellowstone National Park, from July 24, 2024
High-resolution Planet satellite image of Biscuit Basin, Yellowstone National Park, from July 24, 2024
High-resolution Planet satellite image of Biscuit Basin, Yellowstone National Park, from July 24, 2024

High-resolution Planet satellite image of Biscuit Basin, Yellowstone National Park, from July 24, 2024.  The image shows changes that occurred as a result of the July 23, 2024, hydrothermal explosion from Black Diamond Pool, including deposition of material in the vicinity of the pool and a plume of discolored water in the Forehole River.

High-resolution Planet satellite image of Biscuit Basin, Yellowstone National Park, from July 24, 2024.  The image shows changes that occurred as a result of the July 23, 2024, hydrothermal explosion from Black Diamond Pool, including deposition of material in the vicinity of the pool and a plume of discolored water in the Forehole River.

Aerial view of Biscuit Basin, Yellowstone National Park, showing debris deposited by the July 23, 2024, hydrothermal explosion from Black Diamond Pool
Aerial view of Biscuit Basin, Yellowstone National Park, showing debris deposited by the July 23, 2024, hydrothermal explosion from Black Diamond Pool
Aerial view of Biscuit Basin, Yellowstone National Park, showing debris deposited by the July 23, 2024, hydrothermal explosion from Black Diamond Pool
Aerial view of Biscuit Basin, Yellowstone National Park, showing debris deposited by the July 23, 2024, hydrothermal explosion from Black Diamond Pool

Aerial view of Biscuit Basin, Yellowstone National Park, showing debris deposited by the July 23, 2024, hydrothermal explosion from Black Diamond Pool.  Major features are labeled.  The main debris field (within dashed yellow line) has a gray appearance.  Photo taken by Joe Bueter, Yellowstone National Park, on July 23, 2024.

Aerial view of Biscuit Basin, Yellowstone National Park, showing debris deposited by the July 23, 2024, hydrothermal explosion from Black Diamond Pool.  Major features are labeled.  The main debris field (within dashed yellow line) has a gray appearance.  Photo taken by Joe Bueter, Yellowstone National Park, on July 23, 2024.

High-resolution Planet satellite image of Biscuit Basin, Yellowstone National Park, from July 21, 2024
High-resolution Planet satellite image of Biscuit Basin, Yellowstone National Park, from July 21, 2024
High-resolution Planet satellite image of Biscuit Basin, Yellowstone National Park, from July 21, 2024
High-resolution Planet satellite image of Biscuit Basin, Yellowstone National Park, from July 21, 2024

High-resolution Planet satellite image of Biscuit Basin, Yellowstone National Park, from July 21, 2024.  This work utilized data made available through the NASA Commercial Smallsat Data Acquisition (CSDA) Program.  Data are copyright, Planet Labs Inc. 2024, all rights reserved.
 

High-resolution Planet satellite image of Biscuit Basin, Yellowstone National Park, from July 21, 2024.  This work utilized data made available through the NASA Commercial Smallsat Data Acquisition (CSDA) Program.  Data are copyright, Planet Labs Inc. 2024, all rights reserved.
 

Map of major features in Biscuit Basin, Yellowstone National Park
Map of major features in Biscuit Basin, Yellowstone National Park
Map of major features in Biscuit Basin, Yellowstone National Park
Map of major features in Biscuit Basin, Yellowstone National Park

Map of major thermal features in Biscuit Basin, Yellowstone National Park.  Base map from Google Earth

Animation of annual Yellowstone seismicity 2017-2023
Animation of annual Yellowstone seismicity 2017-2023
Animation of annual Yellowstone seismicity 2017-2023
Animation of annual Yellowstone seismicity 2017-2023

This animation shows a map of of Yellowstone seismicity by year from 2017 through 2023.  Earthquakes are red circles, with the circle size indicating earthquake magnitude.  Gray lines are roads, black dashed line shows the caldera boundary, Yellowstone National Park is outlined by black dot-dashed line, and gray dashed lines denote state boundaries.

This animation shows a map of of Yellowstone seismicity by year from 2017 through 2023.  Earthquakes are red circles, with the circle size indicating earthquake magnitude.  Gray lines are roads, black dashed line shows the caldera boundary, Yellowstone National Park is outlined by black dot-dashed line, and gray dashed lines denote state boundaries.

Coronal mass ejections (CMEs) move from the surface of the Sun towards Earth through space
Coronal mass ejections (CMEs) move from the surface of the Sun towards Earth through space
Coronal mass ejections (CMEs) move from the surface of the Sun towards Earth through space
Coronal mass ejections (CMEs) move from the surface of the Sun towards Earth through space

Coronal mass ejections (CMEs) move from the surface of the Sun towards Earth through space. Top: CME is generated as an outflow of plasma and magnetic fields from the Sun, moving through space to Earth over a matter of hours. Bottom: The magnetic fields of the CME and outflowing solar wind interact with Earth’s magnetic field, which shields it from greater effect.

Coronal mass ejections (CMEs) move from the surface of the Sun towards Earth through space. Top: CME is generated as an outflow of plasma and magnetic fields from the Sun, moving through space to Earth over a matter of hours. Bottom: The magnetic fields of the CME and outflowing solar wind interact with Earth’s magnetic field, which shields it from greater effect.

Front cover of the Yellowstone Volcano Observatory 2023 annual report
Front cover of the Yellowstone Volcano Observatory 2023 annual report
Front cover of the Yellowstone Volcano Observatory 2023 annual report
Front cover of the Yellowstone Volcano Observatory 2023 annual report

Front cover of the Yellowstone Volcano Observatory 2023 annual report, which includes a summary of earthquake, deformation, and geyser activity, as well as research investigations and other information. The report is freely available online athttps://pubs.usgs.gov/publication/cir1524.

Front cover of the Yellowstone Volcano Observatory 2023 annual report, which includes a summary of earthquake, deformation, and geyser activity, as well as research investigations and other information. The report is freely available online athttps://pubs.usgs.gov/publication/cir1524.

Infographic giving earthquake, deformation, thermal emission, and geyser statistics for the Yellowstone region for the year 2023
Infographic giving earthquake, deformation, thermal emission, and geyser statistics for the Yellowstone region for the year 2023
Infographic giving earthquake, deformation, thermal emission, and geyser statistics for the Yellowstone region for the year 2023
Infographic giving earthquake, deformation, thermal emission, and geyser statistics for the Yellowstone region for the year 2023

Infographic giving earthquake, deformation, thermal emission, and geyser statistics for the Yellowstone region for the year 2023.  The graphic accompanies the Yellowstone Volcano Observatory 2023 annual report, freely available online athttps://pubs.usgs.gov/publication/cir1524.

Infographic giving earthquake, deformation, thermal emission, and geyser statistics for the Yellowstone region for the year 2023.  The graphic accompanies the Yellowstone Volcano Observatory 2023 annual report, freely available online athttps://pubs.usgs.gov/publication/cir1524.

Site of April 15, 2024, hydrothermal explosion on Porcelain Terrace, Norris Geyser Basin, Yellowstone National Park
Site of April 15, 2024, hydrothermal explosion on Porcelain Terrace, Norris Geyser Basin, Yellowstone National Park
Site of April 15, 2024, hydrothermal explosion on Porcelain Terrace, Norris Geyser Basin, Yellowstone National Park
Site of April 15, 2024, hydrothermal explosion on Porcelain Terrace, Norris Geyser Basin, Yellowstone National Park

Site of April 15, 2024, hydrothermal explosion on Porcelain Terrace, Norris Geyser Basin, Yellowstone National Park.  The small crater and disrupted ground are in silica sinter deposits that formed in the past two years, since water has been flowing from the terrace into Nuphar Lake (off photo to right), and angular fragments of ejecta on top of the sinter are

Site of April 15, 2024, hydrothermal explosion on Porcelain Terrace, Norris Geyser Basin, Yellowstone National Park.  The small crater and disrupted ground are in silica sinter deposits that formed in the past two years, since water has been flowing from the terrace into Nuphar Lake (off photo to right), and angular fragments of ejecta on top of the sinter are

Total electron content data at three GPS stations in Yellowstone National Park
Total electron content data at three GPS stations in Yellowstone National Park
Total electron content data at three GPS stations in Yellowstone National Park
Total electron content data at three GPS stations in Yellowstone National Park

Total electron content (TEC) data—a measure of activity in the ionosphere—at three GPS stations in Yellowstone. Each line color is a measurement using a different satellite passing overhead. Note how the data are steady until the evening of May 10, 2024, when the signals start to fluctuate wildly due to the arrival of the Coronal Mass Ejection.

Total electron content (TEC) data—a measure of activity in the ionosphere—at three GPS stations in Yellowstone. Each line color is a measurement using a different satellite passing overhead. Note how the data are steady until the evening of May 10, 2024, when the signals start to fluctuate wildly due to the arrival of the Coronal Mass Ejection.

Microscopic view of different groundmass textures in rocks
Microscopic view of different groundmass textures in rocks
Microscopic view of different groundmass textures in rocks
Microscopic view of different groundmass textures in rocks

Microscopic view of different groundmass textures in rocks. On the left, this groundmass is a good choice for argon dating, as it consists of abundant interconnected crystals. On the right, the groundmass consists predominantly of glass (black because it does not transmit cross-polarized light) and is a poor choice for argon dating.

Microscopic view of different groundmass textures in rocks. On the left, this groundmass is a good choice for argon dating, as it consists of abundant interconnected crystals. On the right, the groundmass consists predominantly of glass (black because it does not transmit cross-polarized light) and is a poor choice for argon dating.

Mass spectrometer, used to measure the ration of atoms with different masses, in the USGS laboratory at Moffett Field, California
Mass spectrometer, used to measure the ration of atoms with different masses, in the USGS laboratory at Moffett Field, California
Mass spectrometer, used to measure the ration of atoms with different masses, in the USGS laboratory at Moffett Field, California
Mass spectrometer, used to measure the ration of atoms with different masses, in the USGS laboratory at Moffett Field, California

A mass spectrometer is used to measure the ratio of atoms with different masses—in this case, the different isotopes of argon gas, which can be used to determine the age of a volcanic rock. Left: a side view of a mass spectrometer at the USGS Argon Geochronology Laboratory in Moffett Field, CA. Right: a close-up view of the sample chamber in this mass spectrometer.

A mass spectrometer is used to measure the ratio of atoms with different masses—in this case, the different isotopes of argon gas, which can be used to determine the age of a volcanic rock. Left: a side view of a mass spectrometer at the USGS Argon Geochronology Laboratory in Moffett Field, CA. Right: a close-up view of the sample chamber in this mass spectrometer.

Seismic and infrasound data for the April 15, 2024, hydrothermal explosion on Porcelain Terrace at Norris Geyser Basin
Seismic and infrasound data for the April 15, 2024, hydrothermal explosion on Porcelain Terrace at Norris Geyser Basin
Seismic and infrasound data for the April 15, 2024, hydrothermal explosion on Porcelain Terrace at Norris Geyser Basin
Seismic and infrasound data for the April 15, 2024, hydrothermal explosion on Porcelain Terrace at Norris Geyser Basin

Seismic and infrasound data for the April 15, 2024, hydrothermal explosion on Porcelain Terrace at Norris Geyser Basin.  Top plot is seismic data from the YNM station, located at the Norris Geyser Basin Museum.  Middle plot is seismic data from station YNB, in the Ragged Hills of Norris Geyser Basin. Bottom plot is infrasound data from station YNB.&nb

Seismic and infrasound data for the April 15, 2024, hydrothermal explosion on Porcelain Terrace at Norris Geyser Basin.  Top plot is seismic data from the YNM station, located at the Norris Geyser Basin Museum.  Middle plot is seismic data from station YNB, in the Ragged Hills of Norris Geyser Basin. Bottom plot is infrasound data from station YNB.&nb

Was this page helpful?