Skip to main content
U.S. flag

An official website of the United States government

Water Quality and Quantity

Clean water is critical for healthy ecosystems and societies. Its availability is affected by interactions among climate, geology, biota, and human modification of the land. The Climate R&D Program conducts research to document long-term patterns and drivers of water supply and to improve projections of future change and its impacts on ecosystems, communities, agriculture, and infrastructure.

Filter Total Items: 21

Glaciers and Climate Project

Mountain glaciers are dynamic reservoirs of frozen water closely coupled to ecosystems and climate. Glacier change in North America has major socioeconomic impacts, including global sea level change, tourism disruption, natural hazard risk, fishery effects, and water resource alteration. Understanding and quantifying precise connections between glaciers and climate is critical to decision makers...
link

Glaciers and Climate Project

Mountain glaciers are dynamic reservoirs of frozen water closely coupled to ecosystems and climate. Glacier change in North America has major socioeconomic impacts, including global sea level change, tourism disruption, natural hazard risk, fishery effects, and water resource alteration. Understanding and quantifying precise connections between glaciers and climate is critical to decision makers...
Learn More

Environmental streamflows in the United States: historical patterns and predictions

The term environmental streamflows refers to the magnitude, frequency, seasonal timing, duration, and rate of change of streamflows needed to sustain freshwater and estuary ecosystems and human wellbeing. It is important that environmental streamflow assessments by water managers consider changes in climate, land use, and water management; this cannot be done effectively without understanding...
link

Environmental streamflows in the United States: historical patterns and predictions

The term environmental streamflows refers to the magnitude, frequency, seasonal timing, duration, and rate of change of streamflows needed to sustain freshwater and estuary ecosystems and human wellbeing. It is important that environmental streamflow assessments by water managers consider changes in climate, land use, and water management; this cannot be done effectively without understanding...
Learn More

Interdisciplinary Modeling of Land Use, Climate, and Hydrologic Processes

This project focuses on development of new interdisciplinary modeling capabilities of long-term time series that capture interactions among climate, land use, water use, and water availability. Research builds on expanding the USGS Forecasting Scenarios of Land Use (FORE-SCE) model and integrating with spatially explicit models from other disciplines. Interdisciplinary models will be co-developed...
link

Interdisciplinary Modeling of Land Use, Climate, and Hydrologic Processes

This project focuses on development of new interdisciplinary modeling capabilities of long-term time series that capture interactions among climate, land use, water use, and water availability. Research builds on expanding the USGS Forecasting Scenarios of Land Use (FORE-SCE) model and integrating with spatially explicit models from other disciplines. Interdisciplinary models will be co-developed...
Learn More

Understanding long-term drivers of vegetation change and stability in the Southern Rocky Mountains with paleoecological data and ecological models

Drought and fire are powerful disturbance agents that can trigger rapid and lasting changes in the forests of western North America. Over the last decade, increases in fire size and severity coincided with warming, drought, and earlier snowmelt, factors that projected climatic changes are likely to exacerbate. However, recent observations are brief relative to the lifespans of trees and include...
link

Understanding long-term drivers of vegetation change and stability in the Southern Rocky Mountains with paleoecological data and ecological models

Drought and fire are powerful disturbance agents that can trigger rapid and lasting changes in the forests of western North America. Over the last decade, increases in fire size and severity coincided with warming, drought, and earlier snowmelt, factors that projected climatic changes are likely to exacerbate. However, recent observations are brief relative to the lifespans of trees and include...
Learn More

Past Perspectives of Water in the West

In the intermountain west, seasonal precipitation extremes, combined with population growth, are creating new challenges for the management of water resources, ecosystems, and geologic hazards. This research contributes a comprehensive long-term context for a deeper understanding of past hydrologic variability, including the magnitude and frequency of drought and flood extremes and ecosystem...
link

Past Perspectives of Water in the West

In the intermountain west, seasonal precipitation extremes, combined with population growth, are creating new challenges for the management of water resources, ecosystems, and geologic hazards. This research contributes a comprehensive long-term context for a deeper understanding of past hydrologic variability, including the magnitude and frequency of drought and flood extremes and ecosystem...
Learn More

Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts

Estuaries and their surrounding wetlands are coastal transition zones where freshwater rivers meet tidal seawater. As sea levels rise, tidal forces move saltier water farther upstream, extending into freshwater wetland areas. Human changes to the surrounding landscape may amplify the effects of this tidal extension, impacting the resiliency and function of the upper estuarine wetlands. One visible...
link

Impacts of coastal and watershed changes on upper estuaries: causes and implications of wetland ecosystem transitions along the US Atlantic and Gulf Coasts

Estuaries and their surrounding wetlands are coastal transition zones where freshwater rivers meet tidal seawater. As sea levels rise, tidal forces move saltier water farther upstream, extending into freshwater wetland areas. Human changes to the surrounding landscape may amplify the effects of this tidal extension, impacting the resiliency and function of the upper estuarine wetlands. One visible...
Learn More

Accelerating changes and transformations in western mountain lakes

While research into eutrophication has been a cornerstone of limnology for more than 100 years, only recently has it become a topic for the remote alpine lakes that are icons of protected national parks and wilderness areas. National park lakes in the western U.S. are threatened by global change, specifically air pollution, warming, and their interactions, and the problem is quickly worsening...
link

Accelerating changes and transformations in western mountain lakes

While research into eutrophication has been a cornerstone of limnology for more than 100 years, only recently has it become a topic for the remote alpine lakes that are icons of protected national parks and wilderness areas. National park lakes in the western U.S. are threatened by global change, specifically air pollution, warming, and their interactions, and the problem is quickly worsening...
Learn More

Actual evapotranspiration, flash droughts, water deficits, reduced vegetative growth, and wildfires: the effects of seasonally water-limited conditions in a changing climate

The Southeastern U.S. experiences recurring hydrologic droughts, which can reduce water availability for human consumption and ecosystem services, leading to plant stress and reduced plant growth. This project examines relationships between drought and the water cycle in the Southeast with data from the Panola Mountain Research Watershed (PMRW) near Atlanta, Georgia and other Southeastern sites...
link

Actual evapotranspiration, flash droughts, water deficits, reduced vegetative growth, and wildfires: the effects of seasonally water-limited conditions in a changing climate

The Southeastern U.S. experiences recurring hydrologic droughts, which can reduce water availability for human consumption and ecosystem services, leading to plant stress and reduced plant growth. This project examines relationships between drought and the water cycle in the Southeast with data from the Panola Mountain Research Watershed (PMRW) near Atlanta, Georgia and other Southeastern sites...
Learn More

Water Quality Across Regional Stream Networks: The Influence of Land Cover and Land Use, Climate, and Biogeochemical Processing on Spatiotemporal Variance

Land cover and land use (LC/LU), climate, and biogeochemical processing are significant drivers of water quality in streams and rivers over broad scales of space and time. As LC/LU and climate continue to change we can expect changes in water quality. This project seeks to understand the drivers of spatial and temporal variability in water quality across scales using new and existing data to...
link

Water Quality Across Regional Stream Networks: The Influence of Land Cover and Land Use, Climate, and Biogeochemical Processing on Spatiotemporal Variance

Land cover and land use (LC/LU), climate, and biogeochemical processing are significant drivers of water quality in streams and rivers over broad scales of space and time. As LC/LU and climate continue to change we can expect changes in water quality. This project seeks to understand the drivers of spatial and temporal variability in water quality across scales using new and existing data to...
Learn More

Mountains to sea – fluvial transport of carbon and nutrients and effects on ecosystems and people

Stream transport (lateral transfer) of carbon remains a poorly understood flux within the global carbon budget. This research addresses the need to refine our knowledge of both provenance and transformations of Dissolved Organic Matter (DOM) as it moves from mountains to sea. Interpreting shifts in carbon quality with increasing stream order, and how these patterns change with variation in...
link

Mountains to sea – fluvial transport of carbon and nutrients and effects on ecosystems and people

Stream transport (lateral transfer) of carbon remains a poorly understood flux within the global carbon budget. This research addresses the need to refine our knowledge of both provenance and transformations of Dissolved Organic Matter (DOM) as it moves from mountains to sea. Interpreting shifts in carbon quality with increasing stream order, and how these patterns change with variation in...
Learn More

Effects of disturbance and drought on the forests and hydrology of the Southern Rocky Mountains

Climate-related forest disturbances, particularly drought-induced tree mortality and large, high-severity fires from increasingly warm and dry conditions, are altering forest ecosystems and the ecosystem services society depends on (e.g., water supplies). Our research combines long-term place-based ecological data, diverse methods (e.g., paleo, remote-sensing), and networking approaches to...
link

Effects of disturbance and drought on the forests and hydrology of the Southern Rocky Mountains

Climate-related forest disturbances, particularly drought-induced tree mortality and large, high-severity fires from increasingly warm and dry conditions, are altering forest ecosystems and the ecosystem services society depends on (e.g., water supplies). Our research combines long-term place-based ecological data, diverse methods (e.g., paleo, remote-sensing), and networking approaches to...
Learn More

Linking water, carbon, and nitrogen cycles in seasonally snow-covered catchments under changing land resource conditions

Changes in snowpack accumulation, distribution, and melt in high-elevation catchments are likely to have important impacts on water, carbon, and nitrogen cycles, which are tightly coupled through exchanges of energy and biogeochemical compounds between atmospheric, terrestrial, and aquatic environments. Our research helps to better understand how changes in climate will affect water availability...
link

Linking water, carbon, and nitrogen cycles in seasonally snow-covered catchments under changing land resource conditions

Changes in snowpack accumulation, distribution, and melt in high-elevation catchments are likely to have important impacts on water, carbon, and nitrogen cycles, which are tightly coupled through exchanges of energy and biogeochemical compounds between atmospheric, terrestrial, and aquatic environments. Our research helps to better understand how changes in climate will affect water availability...
Learn More